一、复制证明简介
引用官方的解释就是:“InordertoregisterasectorwiththeFilecoinnetwork,thesectorhastobesealed.Sealingisacomputation-heavyprocessthatproducesauniquerepresentationofthedataintheformofaproof,calledProof-of-ReplicationorPoRep.”简单来说,复制证明就是在对扇区进行封装的过程中生成的扇区唯一标识。
复制证明要用到三种特殊参数:数据本身、执行密封的矿工参与者、特定矿工密封特定数据的时间。一旦其中的一个参数发生变化,那么得到的复制证明结果将会完全不同。换句话说,如果同一个矿工稍后试图密封相同的数据,那么这将导致不同的PoRep证明。
复制证明是一个很大的计算过程,接下来我将会分为两部分:P1、P2,从代码的形式给读者介绍复制证明的工作原理。
二、P1代码解析
在本次文章,我将主要介绍32GB封装的P1的过程。在此阶段,会发生PoRep的SDR编码和复制。
因为是第一次,我这里提一句,扇区的不同状态会触发miner不同的执行方法,1.16版本可以看externstorage-sealingfsm.go文件约460行代码内容,代码中记录了miner不同的状态以及触发方法。这里我只放P1状态的代码。
????????...
????????...
????????case?Packing:
????????????????return?m.handlePacking,?processed,?nil
????????case?GetTicket:
????????????????return?m.handleGetTicket,?processed,?nil
????????case?PreCommit1:
????????????????return?m.handlePreCommit1,?processed,?nil
????????case?PreCommit2:
????????????????return?m.handlePreCommit2,?processed,?nil
????????...
????????...
可以看到,PreCommit1调用的是handlePreCommit1方法,从下边可以看出,利用SealPreCommit1方法得到P1结果。
func?(m?*Sealing)?handlePreCommit1(ctx?statemachine.Context,?sector?SectorInfo)?error?{
????????...
????????...
????????pc1o,?err?:=?m.sealer.SealPreCommit1(sector.sealingCtx(ctx.Context()),?m.minerSector(sector.SectorType,?sector.SectorNumber),?sector.TicketValue,?sector.pieceInfos())
????????if?err?!=?nil?{
????????????????return?ctx.Send(SectorSealPreCommit1Failed{xerrors.Errorf("seal?pre?commit(1)?failed:?%w",?err。)
????????}
????????return?ctx.Send(SectorPreCommit1{
????????????????PreCommit1Out:?pc1o,
????????})
}
让我们深入看一下SealPreCommit1方法,这里我们最终调用的是:func(sb*Sealer)SealPreCommit1(...)方法。方法中有我们常常遇到的方法:AcquireSector(...)、Unpadded()。
AcquireSector方法是根据传入的类型与sectorID一起,组合成对应的path。
Uppadded方法是返回一个Piece的未填充大小,以字节为单位,计算公式是:s-(s/128)。有未填充大小,自然就有填充大小,填充大小的计算方法为Padded(),计算公式是:s+(s/127)
func?(sb?*Sealer)?SealPreCommit1(ctx?context.Context,?sector?storage.SectorRef,?ticket?abi.SealRandomness,?pieces?abi.PieceInfo)?(out?storage.PreCommit1Out,?err?error)?{
????????paths,?done,?err?:=?sb.sectors.AcquireSector(ctx,?sector,?storiface.FTUnsealed,?storiface.FTSealed|storiface.FTCache,?storiface.PathSealing)
????????if?err?!=?nil?{
????????????????return?nil,?xerrors.Errorf("acquiring?sector?paths:?%w",?err)
????????}
????????...
????????...
????????...
????????var?sum?abi.UnpaddedPieceSize
????????for?_,?piece?:=?range?pieces?{
????????????????sum?+=?piece.Size.Unpadded()
????????}
????????//?根据扇区证明类型获取扇区大小
????????ssize,?err?:=?sector.ProofType.SectorSize()
区块链数据分析工具 Dune 推出 Spellbook,引入开源软件协作模型:7月22日消息,区块链数据分析工具 Dune 推出 Spellbook,把开源软件的协作模型引入数据科学和分析领域。Spellbook 是对其现有 abstractions 存储库的重组,具有开源分析工程工具,称为 dbt,dbt 模型又名spells可以具体化为视图和表,具有增量加载和日期分区表等改进,可编译成 SQL 并在 dune.com 上运行。[2022/7/22 2:31:45]
????????if?err?!=?nil?{
????????????????return?nil,?err
????????}
????????//?这里比较一次总piece大小和要求的扇区大小是否一致
????????ussize?:=?abi.PaddedPieceSize(ssize).Unpadded()
????????if?sum?!=?ussize?{
????????????????return?nil,?xerrors.Errorf("aggregated?piece?sizes?don't?match?sector?size:?%d?!=?%d?(%d)",?sum,?ussize,?int64(ussize-sum))
????????}
????????//?TODO:?context?cancellation?respect
????????p1o,?err?:=?ffi.SealPreCommitPhase1(
????????????????sector.ProofType,
????????????????paths.Cache,
????????????????paths.Unsealed,
????????????????paths.Sealed,
????????????????sector.ID.Number,
????????????????sector.ID.Miner,
????????????????ticket,
????????????????pieces,
????????)
????????...
????????...
}
接下来,一切准备就绪,我们将要开始我们的P1远游了,因为接下来的代码都不属于lotus,上面方法中我们可以看到ffi.SealPreCommitPhase1,ffi其实使用的是https://github.com/filecoin-project/filecoin-ffi库,我们通过这个库的如下方法,转入rust语言去实现P1。
func?SealPreCommitPhase1(registeredProof?RegisteredSealProof,?cacheDirPath?SliceRefUint8,?stagedSectorPath?SliceRefUint8,?sealedSectorPath?SliceRefUint8,?sectorId?uint64,?proverId?*ByteArray32,?ticket?*ByteArray32,?pieces?SliceRefPublicPieceInfo)?(byte,?error)?{
????????resp?:=?C.seal_pre_commit_phase1(registeredProof,?cacheDirPath,?stagedSectorPath,?sealedSectorPath,?C.uint64_t(sectorId),?proverId,?ticket,?pieces)
????????defer?resp.destroy()
????????if?err?:=?CheckErr(resp);?err?!=?nil?{
????????????????return?nil,?err
????????}
????????return?resp.value.copy(),?nil
}
C库其实就是ffi库自身的rust库,调用的方法如下所示:
fn?seal_pre_commit_phase1(
????registered_proof:?RegisteredSealProof,
????cache_dir_path:?c_slice::Ref<u8>,
????staged_sector_path:?c_slice::Ref<u8>,
????sealed_sector_path:?c_slice::Ref<u8>,
????sector_id:?u64,
????prover_id:?&,
????ticket:?&,
????pieces:?c_slice::Ref<PublicPieceInfo>,
)?->?repr_c::Box<SealPreCommitPhase1Response>?{
????catch_panic_response("seal_pre_commit_phase1",?||?{
????????let?public_pieces:?Vec<PieceInfo>?=?pieces.iter().map(Into::into).collect();
????????let?result?=?seal::seal_pre_commit_phase1(
????????????registered_proof.into(),
????????????as_path_buf(&cache_dir_path)?,
????????????as_path_buf(&staged_sector_path)?,
????????????as_path_buf(&sealed_sector_path)?,
????????????*prover_id,
美国圣路易斯联储发布“用比特币购买鸡蛋”数据分析:金色财经报道,美国圣路易斯联储在其官网上发布“用比特币购买鸡蛋”的数据分析,圣路易斯联储称,自2021年1月至2022年4月,一盒鸡蛋的价格最低为1.47美元,最高为2.52美元,如果用比特币购买同一盒鸡蛋,价格大约在2829和6086 satoshis (注:100万satoshis等于0.01BTC)之间,比美元价格波动大得多。金色财经注意到,美国圣路易斯联储发布的以satoshi计价的鸡蛋价格数据从2015年1月开始,一盒鸡蛋一度最高价值126.5万satoshis,以鸡蛋价格计算,比特币升值巨大。[2022/6/7 4:08:01]
????????????SectorId::from(sector_id),
????????????*ticket,
????????????&public_pieces,
????????)?;
????????let?result?=?serde_json::to_vec(&result)?;
????????Ok(result.into_boxed_slice().into())
????})
}
上面的seal库是:https://github.com/filecoin-project/rust-filecoin-proofs-api。在这个方法对应的文件中,我们可以看到很多方法都对应了一个*__inner方法。实际上seal_pre_commit_phase1只是做了个中转。我们可以直接看seal_pre_commit_phase1_inner方法
pub?fn?seal_pre_commit_phase1<R,?S,?T>(
????registered_proof:?RegisteredSealProof,
????cache_path:?R,
????in_path:?S,
????out_path:?T,
????prover_id:?ProverId,
????sector_id:?SectorId,
????ticket:?Ticket,
????piece_infos:?&,
)?->?Result<SealPreCommitPhase1Output>
where
????R:?AsRef<Path>,
????S:?AsRef<Path>,
????T:?AsRef<Path>,
{
????ensure!(
????????registered_proof.major_version()?==?1,
????????"unusupported?version"
????);
????with_shape!(
????????u64::from(registered_proof.sector_size()),
????????seal_pre_commit_phase1_inner,
????????registered_proof,
????????cache_path.as_ref(),
????????in_path.as_ref(),
????????out_path.as_ref(),
????????prover_id,
????????sector_id,
????????ticket,
????????piece_infos
????)
}
在inner方法中,filecoin_proofs_v1::seal_pre_commit_phase1,会调用证明子系统的实现部分。filecoin_proofs_v1使用的库是:https://github.com/filecoin-project/rust-fil-proofs。
fn?seal_pre_commit_phase1_inner<Tree:?'static?+?MerkleTreeTrait>(
????registered_proof:?RegisteredSealProof,
????cache_path:?&Path,
????in_path:?&Path,
????out_path:?&Path,
????prover_id:?ProverId,
????sector_id:?SectorId,
????ticket:?Ticket,
????piece_infos:?&,
)?->?Result<SealPreCommitPhase1Output>?{
????let?config?=?registered_proof.as_v1_config();
????let?output?=?filecoin_proofs_v1::seal_pre_commit_phase1::<_,?_,?_,?Tree>(
????????config,
????????cache_path,
????????in_path,
????????out_path,
????????prover_id,
????????sector_id,
????????ticket,
????????piece_infos,
????)?;
????let?filecoin_proofs_v1::types::SealPreCommitPhase1Output::<Tree>?{
????????labels,
青岛海关区块链数据分享系统完成上线部署并启动实测:3月16日消息,日前,青岛海关区块链数据分享系统完成上线部署,并启动数据上链实测,架起一条海关与外贸企业、金融机构的区块链加密数据通道。据悉,青岛海关区块链数据分享系统由青岛海关联合青岛闪收付信息技术有限公司共同搭建,根植于“链赢金科”区块链技术联盟链,旨在实现涉企海关信息精准有条件分享,为外贸企业增信提供新路径,为优化营商环境提供数字化解决方案。(齐鲁网)[2020/3/16]
????????config,
????????comm_d,
????}?=?output;
????Ok(SealPreCommitPhase1Output?{
????????registered_proof,
????????labels:?Labels::from_raw::<Tree>(registered_proof,?&labels)?,
????????config,
????????comm_d,
????})
}
filecoin_proofs_v1::seal_pre_commit_phase1方法就是真正实现P1的地方,我将会在这里详细讲解P1,使P1将在这里一一浮出水面。
pub?fn?seal_pre_commit_phase1<R,?S,?T,?Tree:?'static?+?MerkleTreeTrait>(
????porep_config:?PoRepConfig,
????cache_path:?R,
????in_path:?S,
????out_path:?T,
????prover_id:?ProverId,
????sector_id:?SectorId,
????ticket:?Ticket,
????piece_infos:?&,
)?->?Result<SealPreCommitPhase1Output<Tree>>
where
????R:?AsRef<Path>,
????S:?AsRef<Path>,
????T:?AsRef<Path>,
{
????info!("seal_pre_commit_phase1:start:?{:?}",?sector_id);
????//?Sanity?check?all?input?path?types.
????ensure!(
????????metadata(in_path.as_ref())?.is_file(),
????????"in_path?must?be?a?file"
????);
????ensure!(
????????metadata(out_path.as_ref())?.is_file(),
????????"out_path?must?be?a?file"
????);
????ensure!(
????????metadata(cache_path.as_ref())?.is_dir(),
????????"cache_path?must?be?a?directory"
????);
????let?sector_bytes?=?usize::from(PaddedBytesAmount::from(porep_config));
????fs::metadata(&in_path)
????????.with_context(||?format!("could?not?read?in_path={:?})",?in_path.as_ref().display()))?;
????fs::metadata(&out_path)
????????.with_context(||?format!("could?not?read?out_path={:?}",?out_path.as_ref().display()))?;
????//?Copy?unsealed?data?to?output?location,?where?it?will?be?sealed?in?place.
????fs::copy(&in_path,?&out_path).with_context(||?{
????????format!(
????????????"could?not?copy?in_path={:?}?to?out_path={:?}",
????????????in_path.as_ref().display(),
????????????out_path.as_ref().display()
????????)
????})?;
????let?f_data?=?OpenOptions::new()
????????.read(true)
????????.write(true)
????????.open(&out_path)
????????.with_context(||?format!("could?not?open?out_path={:?}",?out_path.as_ref().display()))?;
????//?Zero-pad?the?data?to?the?requested?size?by?extending?the?underlying?file?if?needed.
????f_data.set_len(sector_bytes?as?u64)?;
????let?data?=?unsafe?{
Filecoin当前全网有效算力为596.95PiB:据IPFS100.com报道,filfox浏览器数据显示,Filecoin网络当前区块高度为159465,全网有效算力为596.95PiB,总质押量约为1258.19万枚FIL,活跃矿工数为554个,每区块奖励为11.0028FIL,近24小时产出量为152857FIL,24小时平均挖矿收益为0.2524FIL/TiB;
目前有效算力排名前三的分别为:t02770(时空云&灵动)以41.35PiB暂居第一,t01248(智合云zh)以37.71PiB位居第二,t01782(hellofil.com)以26.09PiB位居第三。[2020/10/19]
????????//?创建由文件支持的可写内存映射
????????MmapOptions::new()
????????????.map_mut(&f_data)
????????????.with_context(||?format!("could?not?mmap?out_path={:?}",?out_path.as_ref().display()))?
????};
????let?compound_setup_params?=?compound_proof::SetupParams?{
????????vanilla_params:?setup_params(
????????????PaddedBytesAmount::from(porep_config),
????????????usize::from(PoRepProofPartitions::from(porep_config)),
????????????porep_config.porep_id,
????????????porep_config.api_version,
????????)?,
????????partitions:?Some(usize::from(PoRepProofPartitions::from(porep_config))),
????????priority:?false,
????};
????//?利用param得到public_params,其vanilla_params.graph字段,就是构建出来的图的数据结构。
????let?compound_public_params?=?<StackedCompound<Tree,?DefaultPieceHasher>?as?CompoundProof<
????????StackedDrg<'_,?Tree,?DefaultPieceHasher>,
????????_,
????>>::setup(&compound_setup_params)?;
????trace!("building?merkle?tree?for?the?original?data");
????let?(config,?comm_d)?=?measure_op(Operation::CommD,?||?->?Result<_>?{
????????let?base_tree_size?=?get_base_tree_size::<DefaultBinaryTree>(porep_config.sector_size)?;
????????let?base_tree_leafs?=?get_base_tree_leafs::<DefaultBinaryTree>(base_tree_size)?;
????????ensure!(
????????????compound_public_params.vanilla_params.graph.size()?==?base_tree_leafs,
????????????"graph?size?and?leaf?size?don't?match"
????????);
????????trace!(
????????????"seal?phase?1:?sector_size?{},?base?tree?size?{},?base?tree?leafs?{}",
????????????u64::from(porep_config.sector_size),
????????????base_tree_size,
????????????base_tree_leafs,
????????);
????????let?mut?config?=?StoreConfig::new(
????????????cache_path.as_ref(),
????????????CacheKey::CommDTree.to_string(),
????????????default_rows_to_discard(base_tree_leafs,?BINARY_ARITY),
????????);
????????let?data_tree?=?create_base_merkle_tree::<BinaryMerkleTree<DefaultPieceHasher>>(
????????????Some(config.clone()),
????????????base_tree_leafs,
????????????&data,
????????)?;
????????drop(data);
????????config.size?=?Some(data_tree.len());
????????let?comm_d_root:?Fr?=?data_tree.root().into();
????????let?comm_d?=?commitment_from_fr(comm_d_root);
Filecoin活动周:全球流行病对IPFS主网上线影响很小:8月4日晚8点,中币成功在中币APP热聊群开展其Filecoin活动周的第二场AMA。在分享“全球流行病对IPFS主网上线多次延迟有影响吗?”时,Filecoin矿池1475矿池表示:“流行病影响因素很小,最多对线下的市场推广和全球巡演有一定影响。”
在分享“Filecoin该如何避免51%的攻击”时,星巢矿池表示:“无论从技术上,还是财力上,付出的成本都远超大家的想象!所以无论是从机制上还是经济上来讲,在链上持有更多算力的人更倾向于维护该链,而不是发起攻击!”
在分享“人们使用IPFS的意义包括哪些?”时,科极星球表示:“IPFS的意义包含了取代HTTP,构建一个更安全高效的网络时代,让Web3.0时代更快到来。”[2020/8/5]
????????drop(data_tree);
????????Ok((config,?comm_d))
????})?;
????trace!("verifying?pieces");
????ensure!(
????????verify_pieces(&comm_d,?piece_infos,?porep_config.into())?,
????????"pieces?and?comm_d?do?not?match"
????);
????let?replica_id?=?generate_replica_id::<Tree::Hasher,?_>(
????????&prover_id,
????????sector_id.into(),
????????&ticket,
????????comm_d,
????????&porep_config.porep_id,
????);
????let?labels?=?StackedDrg::<Tree,?DefaultPieceHasher>::replicate_phase1(
????????&compound_public_params.vanilla_params,
????????&replica_id,
????????config.clone(),
????)?;
????let?out?=?SealPreCommitPhase1Output?{
????????labels,
????????config,
????????comm_d,
????};
????info!("seal_pre_commit_phase1:finish:?{:?}",?sector_id);
????Ok(out)
}
P1实现解释
上边seal_pre_commit_phase1的代码中,我们可以看到有三个path,这三个path分别对应:in_path->unsealedpath、out_path->sealedpath、cache_path->cachepath。代码会先去检查这三个path,他们两个是文件,一个是文件夹。
检查完path后我们可以看到fs::copy方法,它将unsealed文件拷贝到了sealed文件中,完成封装。
Copy完成后拿出sealed文件的数据,并利用.set_len()方法填充数据(或删减),使sealed数据达到证明类型配置规定的扇区大小。
setup_params()
setup_params()方法利用证明类型配置构建启动参数。这里传入的参数为:扇区大小、分区数、证明类型id、证明类型版本。分区数可看https://github.com/filecoin-project/rust-filecoin-proofs-api/blob/23ae2893741829bddc29d7211e06c914bab5423c/src/registry.rs中的partitions()方法,在对应https://github.com/filecoin-project/rust-fil-proofs/blob/ec2ef88a17ffed991b64dc8d96b30c36b275eca0/filecoin-proofs/src/constants.rs得到具体值。我分析以32GB扇区为主,因此分区数为10。另外三个就不讲了,跟分区数一样,都是从这两个文件得到的。
pub?fn?setup_params(
????sector_bytes:?PaddedBytesAmount,
????partitions:?usize,
????porep_id:?,
????api_version:?ApiVersion,
)?->?Result<stacked::SetupParams>?{
????//?得到挑战层数和最大挑战次数
????let?layer_challenges?=?select_challenges(
????????partitions,
????????*POREP_MINIMUM_CHALLENGES
????????????.read()
????????????.expect("POREP_MINIMUM_CHALLENGES?poisoned")
????????????.get(&u64::from(sector_bytes))
????????????.expect("unknown?sector?size")?as?usize,
????????*LAYERS
????????????.read()
????????????.expect("LAYERS?poisoned")
????????????.get(&u64::from(sector_bytes))
????????????.expect("unknown?sector?size"),
????);
????let?sector_bytes?=?u64::from(sector_bytes);
????ensure!(
????????sector_bytes?%?32?==?0,
????????"sector_bytes?({})?must?be?a?multiple?of?32",
????????sector_bytes,
????);
????let?nodes?=?(sector_bytes?/?32)?as?usize;????//?节点数,SDR共有11层,每一层的节点数量相当于1GiB的字节数量。
????let?degree?=?DRG_DEGREE;????//?用于所有?DRG?图的基础度数,?DRG_DEGREE=6。
????let?expansion_degree?=?EXP_DEGREE;?//大小是8,上一层中抽取的节点数量,用来计算当前层的节点数据
????Ok(stacked::SetupParams?{
????????nodes,
????????degree,
????????expansion_degree,
????????porep_id,
????????layer_challenges,
????????api_version,
????})
}
Merkletree和对应comm_d的生成
看完setup_params方法,让我们继续看seal_pre_commit_phase1中的compound_public_params参数,这里实际上set_up的时候,将compound_setup_params参数的值赋予进去,并增加了一个至关重要的vanilla_params.graph字段,就是构造出来的图的数据结构
??接下来我们可以看到seal_pre_commit_phase1方法的70行,在这一段代码用于生成markletree和comm_d
????let?(config,?comm_d)?=?measure_op(Operation::CommD,?||?->?Result<_>?{
????????let?base_tree_size?=?get_base_tree_size::<DefaultBinaryTree>(porep_config.sector_size)?;
????????let?base_tree_leafs?=?get_base_tree_leafs::<DefaultBinaryTree>(base_tree_size)?;
????????ensure!(
????????????compound_public_params.vanilla_params.graph.size()?==?base_tree_leafs,
????????????"graph?size?and?leaf?size?don't?match"
????????);
????????trace!(
????????????"seal?phase?1:?sector_size?{},?base?tree?size?{},?base?tree?leafs?{}",
????????????u64::from(porep_config.sector_size),
????????????base_tree_size,
????????????base_tree_leafs,
????????);
????????let?mut?config?=?StoreConfig::new(
????????????cache_path.as_ref(),
????????????CacheKey::CommDTree.to_string(),
????????????default_rows_to_discard(base_tree_leafs,?BINARY_ARITY),
????????);
????????//?创建默克尔树,根据其树根得到comm_d
????????let?data_tree?=?create_base_merkle_tree::<BinaryMerkleTree<DefaultPieceHasher>>(
????????????Some(config.clone()),
????????????base_tree_leafs,
????????????&data,
????????)?;
????????drop(data);
????????config.size?=?Some(data_tree.len());
????????let?comm_d_root:?Fr?=?data_tree.root().into();
????????let?comm_d?=?commitment_from_fr(comm_d_root);
????????drop(data_tree);
????????Ok((config,?comm_d))
????})?;
这里我们会生成treestoreconfig,然后利用config、base_tree_leafs、sealed填充数据,生成一个merkletree。得到了merkletree后就可以得到merkletree的根。再利用merkletree的根,通过commitment_from_fr算出comm_d。
生成副本id(replica_id)
当我们拿到了comm_d后,会利用verify_pieces方法验证一下comm_d,这个就不讲了,感兴趣的可以自己去看代码。
让我们看一下副本id是如何生成的
????let?replica_id?=?generate_replica_id::<Tree::Hasher,?_>(
????????&prover_id,
????????sector_id.into(),
????????&ticket,
????????comm_d,
????????&porep_config.porep_id,
????);
利用数据本身生成得到了comm_d,这里再加上矿工id、扇区id、ticket,证明类型id。就能得到replicaid值。
///?Generate?the?replica?id?as?expected?for?Stacked?DRG.
pub?fn?generate_replica_id<H:?Hasher,?T:?AsRef<>>(
????prover_id:?&,
????sector_id:?u64,
????ticket:?&,
????comm_d:?T,
????porep_seed:?&,
)?->?H::Domain?{
????//?以链式方式处理输入数据。
????let?hash?=?Sha256::new()
????????.chain_update(prover_id)
????????.chain_update(§or_id.to_be_bytes())
????????.chain_update(ticket)
????????.chain_update(&comm_d)
????????.chain_update(porep_seed)
????????.finalize();
????bytes_into_fr_repr_safe(hash.as_ref()).into()????//通过将?le_bytes?的最重要的两位归零,将?32?字节的切片转换为?Fr::Repr。
}
生成labels
接下来就是P1最后的操作:生成labels。将public_params、复制id和treestoreconfig作为参数传入。
????pub?fn?replicate_phase1(
????????pp:?&'a?PublicParams<Tree>,
????????replica_id:?&<Tree::Hasher?as?Hasher>::Domain,
????????config:?StoreConfig,
????)?->?Result<Labels<Tree>>?{
????????info!("replicate_phase1");
????????let?labels?=?measure_op(Operation::EncodeWindowTimeAll,?||?{
????????????Self::generate_labels_for_encoding(&pp.graph,?&pp.layer_challenges,?replica_id,?config)
????????})?
????????.0;
????????Ok(labels)
????}
这里可以看到,代码提取出了public_params的.graph字段,就是构造出来的图的数据结构,和public_params中包含挑战层数和最大挑战次数的layer_challenges。
接下来看generate_labels_for_encoding。这里可以分为多核与单核进行SDR编码,创建labels。
????pub?fn?generate_labels_for_encoding(
????????graph:?&StackedBucketGraph<Tree::Hasher>,
????????layer_challenges:?&LayerChallenges,
????????replica_id:?&<Tree::Hasher?as?Hasher>::Domain,
????????config:?StoreConfig,
????)?->?Result<(Labels<Tree>,?Vec<LayerState>)>?{
????????let?mut?parent_cache?=?graph.parent_cache()?;
????????#
????????{
????????????if?SETTINGS.use_multicore_sdr?{
????????????????info!("multi?core?replication");
????????????????create_label::multi::create_labels_for_encoding(
????????????????????graph,
????????????????????&parent_cache,
????????????????????layer_challenges.layers(),
????????????????????replica_id,
????????????????????config,
????????????????)
????????????}?else?{
????????????????info!("single?core?replication");
????????????????create_label::single::create_labels_for_encoding(
????????????????????graph,
????????????????????&mut?parent_cache,
????????????????????layer_challenges.layers(),
????????????????????replica_id,
????????????????????config,
????????????????)
????????????}
????????}
????????#
????????{
????????????info!("single?core?replication");
????????????create_label::single::create_labels_for_encoding(
????????????????graph,
????????????????&mut?parent_cache,
????????????????layer_challenges.layers(),
????????????????replica_id,
????????????????config,
????????????)
????????}
????}
我将生成label的地址放在这里,想看的可以去看一下,这里就不细讲了。
多核:https://github.com/filecoin-project/rust-fil-proofs/blob/master/storage-proofs-porep/src/stacked/vanilla/create_label/multi.rs
单核:https://github.com/filecoin-project/rust-fil-proofs/blob/master/storage-proofs-porep/src/stacked/vanilla/create_label/single.rs
三、总结
其实rust语言我接触不多,开始的时候看得有点头痛,最后也是硬着头皮啃下来的。
如有大佬认为文章有不对的地方,欢迎纠正。
来源:金色财经
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。