深度解析Data Availability与Celestia的解决方案_NFT:Hare Chain

作者:Bec修订:Evelyn

什么是DataAvailability

大家都知道,区块链技术的一个特点就是:存放在链上的数据是安全可靠的,不可篡改的。那数据可用性是指的什么呢?难道区块链的共识不能保证数据的安全了吗?显然不是,区块链数据的安全性,是大家都认可的,也是区块链一直持续发展的一个动力之一。那么DA层是什么,我们先来看看下面几种情况。一个节点如果想验证某一笔交易或者某一个区块,这个节点需要下载所有的区块和交易数据。由于区块链的持续运行,区块和交易数据会持续增长,这个节点的成本也会越来越高。以至于越来越多的节点只能选择运行轻节点。这些轻节点,没有下载所有的交易数据,它们不能对交易和区块进行验证,只能相信它们选择的共识节点。因此,实际上这些轻节点是不知道获得的数据是否可用。同时区块链网络为了提高效率,一直在尝试进行扩容。以太坊的L2就是以太坊的一种扩容方案,从而提高以太坊的吞吐量。但L1和L2在本质上还是两个网络,L1是不会参与L2的共识,也不会验证和执行L2的交易,同理L2也不会参与L1的共识,亦不会验证和执行L1的交易。但是在此时,L1与L2之间其实是有信任问题的,例如:Rollup要求将所有交易数据都记录到以太坊的交易中,那么Rollup的用户为了验证自己的交易是否存入以太坊,他还需要运行一个以太坊的全节点吗?从目前区块链的工作机制当中我们可以知道,当一个节点不参与共识的时候,特别是没有存储所有交易数据的时候,对于它自己获得的数据是否有效它是无法验证的,这些节点目前都只能相信自己连接的共识节点不会自己,或者多连接几个共识节点,做一个小小的容错。因此DA层解决的问题是,在不参与共识、以及不用存储所有交易数据的情况下,依然能够对交易进行验证,从而证明这个交易是否可用。Celestia

币赢CoinW与XNFT Protocol 达成深度战略合作:据官方消息,近日币赢CoinW与XNFT Protocol 达成深度战略合作,双方将共同探索NFT领域,为用户和市场提供更丰富、更多样的NFT的产品和玩法。

据悉,XNFT protocol是去中心化的NFT盲盒交易协议,包含一口价交易、拍卖交易等传统交易机制,又包含了独创的抽签式交易机制(即“盲盒交易机制”)等。币赢CoinW,致力于为投资者精选优质加密资产,为用户创造科技金融新模式。[2021/4/14 20:19:30]

在上面先介绍了什么是DA,接下来,我们再来看看Celestia项目是打算如何来解决这个问题的。Celestia项目围绕二维Reed-Solomon纠删码,设计了一套随机抽样来验证数据、以及恢复数据的方案从而确保数据可用。当一个全节点发现轻节点收到有问题的数据时,会构建一个欺诈证明并发送给这个轻节点,轻节点收到欺诈证明之后,从网络中通过随机抽样的方式,获得需要的数据,来验证这个欺诈证明是否有效,从而能够明确的知道自己之前获得的数据是否可用。轻节点不需要信任给自己发送数据的节点,也不需要信任给自己发送欺诈证明的节点,这是因为轻节点是通过随机抽样的方式,来获取进行此次验证所需要的数据,因此安全性能是由整个网络来提供的。这样也使得DA层的安全等级,能够接近共识层的安全等级。接下来,我们来了解一下Celestia具体是如何工作的。由于Celestia项目还处于开发测试阶段,因此这里采用的都是现阶段的白皮书的介绍方案,可能会与实际的解决方案有出入。准备

CoinBene满币已与金色人气主播石昊论币达成深度合作:据官方消息,CoinBene满币与金色人气主播石昊论币达成深度合作,特邀石昊老师入驻成为满币合约跟单交易员,并进行直播分享讲解。

据悉,直播主要内容为对目前行情下的分析以及如波浪理论、裸k战法等各种交易的实战应用,深入浅出将理论落实到实际。日后将在金色财经的“金色直播间”进行全天候不定时直播。[2020/10/22]

欺诈证明的验证,必须是高效的,并且不需要全部的交易数据,也不需要执行具体的交易,因此Celestia对于自己区块的数据,进行了一些扩展。1.stateRoot

状态的稀疏默克尔树的根,这种默克尔树的叶节点,是一个key-value对。定义了一种变量,状态见证(w):是一些key-value对,以及他们在默克尔树中的证明,组成的集合:

定义了一个函数,rootTransition:可以通过状态根、交易、以及这些交易的状态见证,转换得到交易执行后的状态的根。也就是每个交易执行后的状态的默克尔根stateRoot`可以通过rootTransition(stateRoot,t,w)得到

上海市将研究推动节能项目和区块链技术深度融合:上海市发改委印发上海市2020年节能减排和应对气候变化重点工作安排的通知提出,推动城市交通电动化和清洁化,挖掘节能改造潜力。开展余热资源共享模式的创新与实践,完善“互联网+余热共享”的大数据库交互平台,加强供需对接,促成一批示范性项目。研究推动节能项目和区块链技术的深度融合。(第一财经)[2020/4/30]

2.dataRoot

将交易,以及这些交易执行的中间状态根,组合成一个固定大小与固定格式的shares。这些所有的交易的shares,按照二维RS纠删码,进行扩展,最后得到一个默克尔树的根,即dataRoot。具体步骤将初始的交易数据,按照shares的大小与格式进行封装。将shares放入一个k×k的矩阵,如果数量不够,则填充补齐。然后应用RS纠删码,按照行和列进行3次补齐,最终得到一个2k?2k的矩阵。对这个矩阵的每一行和每一列,都构建一个默克尔树,得到2?k个行根和2?k个列根。最后将这4?k个根,组成一个默克尔树,得到根dataRoot。

动态 | 梦网集团:深度布局“区块链+通信”:据证券时报消息,梦网集团(002123.SZ)向证券时报回应其在区块链领域的布局情况时表示,目前,梦网集团区块链主要涉及三大业务:网间清结算、可信账单支付和通信反欺诈溯源平台,而在梦网集团云通信战略部署中,基于区块链技术的“可信云”已成为公司四大战略版块之一。其中,区块链网间结算平台基于手机通话或其他通信数据,通过区块链的方式进行密钥管理、身份管理,提供细粒度敏感业务数据或隐私数据加密保护,保护业务数据安全和隐私安全,防止欺诈,提升安全级别。而可信通信结算层的应用,能够在支持与运营商之间直接结算DCB(Direct Carrier Billing)的同时,通过智能合约独立运行的沙箱环境,保障交易数据的隐私性,提高交易的自动化水平。[2019/10/28]

STB Chain与MVchain建立深度战略合作关系:此次STB Chain与MVchain达成战略合作,通过双方在区块链技术互补的优势解决数字资产化的流通问题,STB Chain解决软件产品数字资产化,MVchain是传统资产与数字资产流通交易。[2018/1/3]

sharesshares是Celestia项目定义的一个固定大小和格式的数据结构。主要内容是交易,以及执行这些交易的中间状态根。由于没有具体规定多少交易,需要生成对应的中间状态根,项目方设定了一个Period变量,作为最大限制周期,这个限制可以是最大多少交易之内必须生成中间状态根,也可以是多少字节,或者多少GAS。还定义了两个函数来帮助验证:parseShares函数:输入shares,得到消息m,可以是中间状态根,也可能是交易。parsePeriod函数:输入消息,得到前状态根,执行后状态根,以及交易列表。设定的格式举例固定256字节0-80:开始的交易81-170:包含的交易171-190:中间状态根191-256:下一批开始的交易白皮书中,介绍了两种欺诈证明,下面将分别对此进行介绍:3.状态转换无效的欺诈证明

这是一个针对stateRoot的一个欺诈证明。全节点利用dataRoot中的shares,来帮助轻节点验证收到的区块头中的stateRoot是否有效。状态转换无效的欺诈证明的组成:对应块的blockhash相关的shares这些shares在dataRoot对应的默克尔树中的默克尔证明这些shares包含的交易的状态见证。证明的验证:验证blockhash,确定是对于哪个区块的欺诈证明。验证证明中的每个shares的默克尔证明是否有效。通过shares的两个解析函数,可以正确得到对应的交易列表,以及这批交易的执行前状态根和执行后状态根。并且如果执行前状态根为空,则第一个交易一定是块的第一笔交易;同时如果执行后状态根为空,则最后一笔交易一定也是块的最后一笔交易。根据rootTransition函数,来验证得到的两个状态根。4.错误生成扩展数据的欺诈证明

这是一个针对shares在网络传播时,当一个全节点从网络中收到shares恢复的数据,与自己的数据不匹配时,会向网络回应欺诈证明。错误生成扩展数据的欺诈证明的组成:错误的shares所在行或列的默克尔根。这个行或列的默克尔根,在dataRoot对应的默克尔树中的默克尔证明。这足够恢复这一行或列的shares。每个shares在dataRoot对应的默克尔树中的默克尔证明。证明的验证:验证blockhash,确定是对于哪个区块的欺诈证明。验证证明中行或列的默克尔根的默克尔证明是否有效。注:VerifyMerkleProof(行或列的默克尔根,行或列的默克尔根的默克尔证明,dataRoot,长度,位置索引)其中前面2个数据是证明携带的数据,后面3个是本地数据。验证证明中每个shares的默克尔证明是否有效。注:VerifyShareMerkleProof(shares,shares的默克尔证明,dataRoot,长度,位置索引)其中dataRoot是本地数据,另外数据都是从证明中获得。通过收到的shares,恢复这一行或列的所有数据,并验证其默克尔根是否等于自己之前收到的对应行或列的默克尔根。数据可用性

通过2维RS纠删码,Celestia的轻节点通过随机抽样的方式,来获取区块数据,以及验证欺诈证明的相关数据。同时随机抽样的数据,并在网络中传播,当达到一定的数量时,也可以帮助网络恢复区块数据。下面介绍一下具体的工作流程:轻节点从任意一个连接的全节点中获取一个新区块的块头,以及2k个行和2k个列的默克尔根。先用这些默克尔根与区块头中的dataRoot进行初步校验。如果错误则拒绝这个区块头。在这个2k×2k的矩阵中,轻节点随机挑选一组不重复的坐标,将这些坐标发送给与自己相连的全节点们。如果一个全节点拥有这些坐标所对应的所有数据,就会将这个坐标对应的shares,以及shares的行或列的默克尔证明,回应给轻节点。轻节点对于每一个收到的shares,都会验证其默克尔证明是否有效。注:VerifyMerkleProof其中前面2个数据是证明携带的数据,后面3个是本地数据。如果一个全节点没有回应某一个坐标的shares,轻节点则会将自己收到的对应的shares、以及它的默克尔证明发送给这个全节点,这个全节点也会将收到的数据转发给相连的其他全节点。如果步骤4中的验证都没有问题,并且步骤2中抽样的坐标都有收到回应,同时在一个设定的时间段内没有收到关于这个区块的欺诈证明,则轻节点认为这个区块是数据可用的。

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金智博客

[0:0ms0-3:822ms