机器学习技术在币种分析中的应用
谈到机器学习,大家可能会对这个AI方面的概念比较陌生,但如果提到谷歌AlphaGo,大家肯定就很熟悉了。当年谷歌人工智能程序通过机器学习的方式掌握围棋比赛技巧后,轻松击败了多个国家的围棋冠军,时隔3年世界冠军韩国李世石宣布退役时,还高呼AI不可战胜......通过机器学习训练后的计算机程序,在某些类似比赛和交易这样的博弈场景中,是比人类具有更高胜率的。
非小号研究本次就做了一个硬核的试验:将机器学习技术应用在币种分析中,看看会有什么好玩的结论,以及是否真的能够帮助我们判断、交易。
我们的具体课题是,通过现有的市场公开数据预测明日收益率为正还是为负。
这是一个二分类问题,我们可以使用的模型有很多,这里我们选用了以下模型用于实验:逻辑回归LR、线性判别分析LDA、二次判别分析QDA、支持向量机SVC、决策树DT、随机森林RF、渐变提升树GBC等。
本次用来试验的数据主要有三个方面:
声音 | 傅明:区块链带来现有制度深度变革,政务、金融等领域有望率先规模化落地:金色财经报道,区块链人才专家智库专家、国际数权经济合作联盟执行主席傅明接受专访表示,任何创新技术实现大规模的应用,应该能够满足社会经济活动的需要,能够创造社会价值和经济价值。在区块链与实际经济深度融合中,我比较看好政务、金融、民生、智慧城市领域。具体来说,区块链在政务服务领域的应用将大规模爆发,目标之一是打破政务数据孤岛,深化“最多跑一次”改革;金融领域还会延续引领区块链应用的广度和深度,监管机制也会逐步完善;在民生领域,大数据、信息化发展具备优势的教育、医疗、食品药品安全、精准扶贫等方面,会结合区块链的应用,打造出创新模式,并带动创新发展;新型智慧城市、信息基础设施、智慧交通、能源电力领域,借力国家大力推动信息化建设,区块链作为数字经济的基础设施,将会发挥重要作用。[2019/11/14]
1、资产的历史数据;
2、相关品种,如黄金原油美国三大股指等;
声音 | 发挥衍生品的作用需深度理解该工具的意义:本期金色相对论以“区块链金融衍生品,魔鬼or天使?”为主题,在辩论环节,方图FOTA.comCEO蔡良滨表示,其实衍生品的意义第一在于提供套期保值的工具,第二在于帮助市场进行价格发现,第三在于帮助投资者实现双向投资,第四可以增加标的本身的维度多样性,只有深度理解了衍生品工具的意义,才有可能真正发挥衍生品工具的市场意义。[2018/12/28]
3、币圈相关币种数据,主要是主流币。
完整的机器学习建立流程
1.首先,特征工程
特征工程是机器学习中最关键的步骤,没有之一。
这有别于大众认知的AI能解决一切问题,人工智能是万能的认知。真实的情况是数据科学家们常挂在嘴边的一句话是“输入的是垃圾,输出的也一定是垃圾”,这意味着特征工程做得好不好会直接影响AI的“智商”。
特征工程不止是数据需要清洗重新组合,还需要将数据进行标准化处理。
数字钱包Dbank将与360继续深度合作:360上周首次发布针对区块链领域的安全解决方案,今日又发现了EOS史诗级安全漏洞。作为360在数字钱包领域的首家战略合作方,Dbank表示将和360就安全和DAPP实现场景等领域继续展开深度合作。双方将结合360安全大脑,深度挖掘用户在数字钱包领域的需求,加固核心代码,同时拓展EOS超级节点安全解决方案和区块链应用落地场景。
Dbank核心安全技术由360支持,具备包括包括“手机病检测”、“数字证书安全”、“虚假合约地址识别”等10层安全防护。同时有便捷的“EOS一键映射”功能。[2018/5/29]
2.其次,建模
建模是一个简单的过程,模型在那里,无非是灌入数据后不断地调参优化。国内很多大互联网公司的AI团队也都是在常用模型中选择靴子不断优化,大家的过程都是一样的,没有什么捷径。
3.评价模型效果
模型的效果评估有很多,常见的有MSE,MAE,取代矩阵,ROC等。
Gene基因源码链与国内基因检测公司星舰基因达成深度战略合作:近日,新加坡基因源码链基金会与国内知名DTC基因检测服务公司星舰基因达成深度战略合作,双方将共同推进区块链技术在健康大数据存储领域应用。星舰基因为基因源码链提供基因测序技术、数据分析、本地系统研发等技术支持,同时助力生态体系的落地和推广。Gene基因源码链团队由跨界极客和博士团队组成,有EOS开源开发者、资深黑客、生物信息博士、人工智能博士等组成。诺贝尔奖得主布赖恩·戴维·约瑟夫森出任项目顾问。Gene目前已获得节点资本、创世资本、双花资本等机构投资。[2018/5/23]
4.最终,应用
当模型对数据的可解释度良好时,模型可用。一般这个可解释度要达到80%以上,90%以上更好,但如果100%可解释就需要注意是否出错了。
对BTC的解释性
数据一
仅有高开低收量,及高开低收量计算的技术指标作为训练数据。得到各个模型解释度如下表所示:
摩根士丹利分析师深度报告全解析:比特币“见底”规律及六大必读趋势:摩根士丹利分析师Sheena Shah 19日发表最新研报。主要观点包括:今天正在经历的比特币熊市早就在2000年的纳斯达克市场上演过,只不过是以15倍速度在“快进”;熊市看到唯一交易量增加的数字货币可能就是USDT,尽管USDT的可靠性遭遇广泛质疑,因为交易员们面对各种币的大跌只能暂时先买回USDT;日元升值可能促使日本散户增加对比特币的投资;千币齐跌,但区块链行业依旧火热,对于传统VC来说,参与ICO也有三大好处;比特币与其它币之间的相关性随价格下跌而上升,市场上涨时,它们的相关性反而下降;比特币在不同交易所的价差显示,价格触底反弹的日子,价差会有规律的突然拉大。[2018/3/20]
由上表可以得到,单纯的用高开低收量和技术指标作为特征,在以上机器学习模型中训练,无法很好地解释价格。其实仅从这里就能看出币圈属于弱势有效市场。技术分析得到的尺度是判断二分类正确概率是50%,即模型无效,也与弱势有效市场中技术分析无效,基本面分析和内幕信息有效相吻合。
市场包含三种信息:历史信息,公开信息和内幕信息。
各种信息分别对应不同分析交易策略:历史信息对应技术分析;公开信息对应的基本分析;内幕信息对应的内幕交易。
当市场有效时,市场已反映三种信息,故对三种信息的分析均值不能在市场获得优势,某种分析和交易策略均值无效;当市场为半强势有效时,市场已反映公开信息和历史信息,故技术分析和基本分析无效,内幕交易有效;当市场为弱有效市场时,市场只反映历史信息,故技术分析无效,基本分析和内幕交易有效。
数据二
不但有高开低收量数据,我们还增加了相关品种的数据,如美国三大股指,黄金,原油,币圈主流币种等作为训练数据。
为什么认为美国三大股指,黄金,原油,币圈其他主流币种等数据可以插入基本面数据?
虽然这些因素不是直接影响BTC的基本面因素,但是它们和BTC由相同的基本面因素影响,所以这些数据中包含很少的一部分基本面信息。
由上表可以得知:在增加基本面替代特征后,解释度提升了10%以上。
那么提高多少可解释度是模型极限?
经过1000次的实验得到,当随机因子为1730时,随机森林RF模型的可解释度67%,这是所有实验中所有模型中可解释度最高的一组。
模型效果的衡量:
混淆矩阵
混淆矩阵就是分别统计分类模型归错类,归对类的观测值个数,然后把结果放在一个表里展示出来。这个表就是混淆矩阵,把预测情况与实际情况的所有结果两两混合,结果就会出现以下几种情况,就组成了混淆矩阵。如下:
ROC曲线
ROC曲线,又称接受者操作特征曲线。该曲线最早应用于雷达信号检测领域,用于区分信号与噪声。后来用于评价模型的预测能力,ROC曲线是基于混淆矩阵得出的。
ROC曲线中的主要两个指标就是真正率和假正率,其中横坐标为假正率,纵坐标为真正率,下面就是一个标准的ROC曲线图。
横轴FPR:1-TNR,1-Specificity,FPR越大,预测正类中实际负类越多。
纵轴TPR:Sensitivity(正类覆盖率),TPR越大,预测正类中实际正类越多。
为什么解释性不强?
1.交易量数据造假
2.未有数据披露制度约束,未形成一体的基本面数据
3.市场有可能存在内幕信息
目前我们模型中的数据还不够全面,仍然需要更多的努力揭示更多的基本面信息,才能更好地解释BTC价格。
在披露更多信息时,才能促进市场效率的提高,促进币圈的发展,这也是“非小号”作为机构应该做且做好的事情。
是否有使用价值?
虽然机器学习在解决传统问题时都要求正确率达到80%甚至90%以上才可以使用,但是我们能否使用一个解释度在60%-70%之间的模型?
-1.模型是有解释度的,60%也远高于50%,长期预测胜率显著高于50%的多空各一半的平均水平,这有点类似庄家在轮盘中有概率优势一样,时间越久赢面越大;
-2.加入限制条件时可以提高概率,单次若想取得概率优势只能限制使用条件
如下所示为决策树输出的树形图,用红色框起来的枝杈正确率很高,但是只有满足层层条件后才会有交易机会。为了达到盈利目的,交易者要在交易机会与单次交易盈利水平中找到平衡点。
单个树杈局部图如下所示,当满足红框圈住的条件时,正确率提高到93%,这完全达到了使用要求:
对ETH和TRX的解释性
从模型训练结果看,已知特征使用以上模型训练时,可解释度也在60%-70%之间。下面我们列举一些有价值的树杈,树杈概率的提高是基于条件概率提升的。
ETH
由以下ETH树形图可以看出,当同时满足条件
美元比eth收盘价<0.01,eth昨日成交量<3956783616,原油成交量>117392.5,涨跌幅>0,黄金开盘价<1489.25时,时,有93%的正确率,这时交易机会是总交易机会的19.05%(28/147)。
TRX
由以下TRX树形图可以看出,当同时满足条件bch<289.51,bsv>63.5,美元比eth调整后收盘价>0.01,纳指收盘价<8371.12,道指最低价>24290.5,美元比eth收盘价>0.01,瑞波币收盘价<0.32时,有82%的正确率,这时交易机会是总交易机会的23.68(36/152)。
如果以上使用机器学习来分析不同币种交易机会的流程没看懂,也没有关系,涉及到的知识比较复杂。所以,非小号后期将应用很多大数据或AI等技术帮助大家建立分析模型,直接在APP中为大家提供易懂和好用的币价预测工具或投资策略参考,一键体验。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。