谷歌实现量子霸权之后,量子计算vs区块链,比特币神话即将终结?_加密货币:AMOR币

上周,包括《财富》、《金融时报》在内的等多家外媒报道,谷歌已经利用一台53量子比特的量子计算机实现了传统架构计算机无法完成的任务,即在世界第一超算需要计算1万年的实验中,谷歌的量子计算机只用了3分20秒。

这是迄今为止表明量子计算机超越传统架构计算机,并走向实用化最为强烈的迹象。虽然相关论文上传至NASA后不久即被删除,但还是有眼疾手快的读者及时保存了论文。

一时间,“谷歌是否真的实现了量子霸权”成为了网友们热议的话题,而在币圈,各个社群也纷纷开始担心,量子计算机会成为区块链加密算法的致命威胁。

近年来,量子计算和量子计算机在科学界和工业界都引起了大量关注。科学家们期望利用材料的量子性质,来打破传统计算机小型化的摩尔定律,进而建立起新型的量子计算机。

而量子计算这一概念则是著名物理学家理查德·费曼在1981年首先引入的。值得关注的是,该领域的早期创始人之一,图灵奖获得者,如今正积极投身于区块链领域的姚期智院士曾在1993年为量子计算理论基础的建立做出过核心贡献。

量子计算其背后原理是运用量子叠加原理,使得量子电脑可以不同于传统电脑,利用量子位元来储存数据,再通过量子演算法进行数据运算,使得速度可以达到传统电脑的“数亿倍”。

此外,由于量子特性在信息领域中的独特功能,在增大信息容量、提高运算速度、确保信息安全等方面都将突破现有传统信息系统的极限。所以,量子计算科学在过去几年的发展可以用突飞猛进来形容。

根据《财富》的报道,谷歌的量子计算机名为“Sycamore”,有54个超导量子位元,其中在测试期间工作的超导量子位元有53个。它的计算任务是“证明随机数发生器产生数字的随机性”。

据报道,“Sycamore”能够在3分20秒内完成上述计算,而世界上最快的传统超级计算机“顶点”解决同样的问题大约需要1万年。这意味着传统计算机无法就此进行计算,并使得“Sycamore”成为第一个证明量子优势的计算机。

这其实首先牵扯到一个概念,即quantumsupremacy,有人翻译为“量子优势”,也有人翻译为“量子霸权”,一般指的就是量子计算在某一个问题上,可以解决经典计算机不能解决的问题或者是比经典计算机有显著的加速(一般是指数加速)。

区块链的恐慌与危机到来

谷歌的这一重要进展,也使得区块链的恐慌也接踵而来。很多人开始担心,一旦区块链背后的加密算法能够被“量子计算机”破解,那么区块链上的公私钥机制,将不能够再保护用户存放于区块链上的数字资产,甚至可能使分布式帐本上的加密信息,变得一览无遗。

而这将会导致目前区块链所规划出的技术发展蓝图,以及它为企业、初创公司所带来的潜力与希望,都像脆弱的纸片一样被量子计算机逐一“撕碎”。

但是,如果因为恐慌就选择放弃区块链、以及其他相关的新兴技术,可能依然言之过早。

事实上,这篇论文也同时指出,尽管这台计算机实现了“量子霸权的实验”,并预示着“备受期待的计算范式的出现”,但它只能够执行单一的、高度技术性的计算,量子计算机距离解决实际问题还需要数年时间。

此外,一些竞争对手在论文曝光之后就对谷歌宣称的成就提出了质疑。在接受英国媒体采访时,IBM研究主管吉尔就表示,谷歌宣称已取得量子霸权地位“完全是错误的”。吉尔说,谷歌的系统是专门为解决单个问题而设计的硬件,并不是一台通用计算机。

事实上,根据美国加密货币研究与工程中心的研究论文,只有包含1500个量子位的量子计算机才能执行这个算法。而谷歌新发布论文中的“量子霸权”机器仅包含54个量子位,暂时不太可能满足标准。要达到1500个量子位的标准可能还需要很多年。

简而言之就是,我们离真正实现量子计算的完全功力其实还有很遥远的距离。

“电子现金之父”的抗量子链

目前,已经有一些项目正在为应对量子计算时代,开发“具有量子抗性”的区块链。

区块链领域的传奇人物,被誉为“数字货币之父”的大卫·乔姆在今年8月,于柏林举办的Web3峰会上,就宣布推出了自己的“抗量子链”,并发行了加密货币Praxxis。

据悉,这个项目是一个通过采用与现存加密机制完全不同的加密技术,以达成区块链中被广泛讨论的“不可能三角难题”、以及解决现存加密技术中皆存在的安全弱点。

大卫·乔姆自己则表示,该项目是为了抵御Shor算法(等漏洞而建立的;在其共识机制和结构内设置了对抗量子计算的签名。

不过目前,Praxxis的白皮书依然尚未公开,大卫·乔姆表示预计会在今年年底左右公开。

Shor算法:公私钥机制的破坏者

目前既存的算法中,Shor算法已经向世人实现了该如何从公钥中找到对应的私钥;更糟糕的是,Shor算法还能专门破解“椭圆曲线数字签名算法”,而这种这种签名算法在比特币和以太坊等加密货币中都有应用。

Shor算法的主要威胁就在于其超越传统技术的能力。区块链赶不上量子计算的主要原因是高度依赖单向数学函数。俄罗斯量子中心的几位研究人员在他们的研究文章《量子计算机威胁区块链安全》中也强调了这一点:

“十年之内,量子计算机将能够计算单向函数,原有用于保护互联网和金融交易的区块链的单向加密手段即将过时。”

可以说,单向的交易验证和和数字签名创建,在面对量子计算机时是一种固有缺陷。在量子计算机中将单向类的功能反向使用,将允许攻击向量,从而能够操纵交易历史记录。虽然这些在当前技术无法实现,但在量子计算机中轻而易举。

但是一个好消息是,一直以来,都不断有人在尝试抵抗这种量子威胁,美国国家安全局便是其中之一,他们显然有潜在监控民众交易记录的需求。

彭博社记者威廉·特顿的就曾发布过一条消息,表示美国国家安全局有创建抗量子密码技术的计划。而且,有报告表明,该项目旨在保护美国免受来自其他国家的勒索软件攻击,而不是一个NSA秘密项目。

但是,正如Google研究人员所指出的那样,量子计算的功能可能会“以两倍的指数速度增长”。而且,即使含1500个量子位元的量子计算机可能仍需数年才能诞生,但其诞生绝非不可能。

所以,如果未来没有任何一个足够强大的新“抗量子区块链”存在,那么,区块链技术的淘汰也并非完全没有可能,甚至会比很多人想象的还要早得多。

但是如今,无论是区块链技术,还是量子计算,无数的科学家、研究学者正积极的投身在各自的阵营里,创造着属于自己的技术革命。

谷歌希望用这样一个“里程碑”来帮他们,在未来迅速迈向全量子计算的计划奠定基础。

而区块链的下一个“里程碑”,又在哪里呢?

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金智博客

XMRSolana(SOL)在偏离阻力后下降_COT:FIB

Solana的交易接近修正形态的支撑线,低于该形态的细分可能会大大加快下降速度。自6月14日以来,SOL一直在随着支撑线的上升而增加。该生产线已经过多次验证,最近一次是在7月26日.

[0:15ms0-4:818ms