为了解决这个问题,大名鼎鼎的数学家不惜……_TER:ARISTO币

本文转自:科普中国

最近我学习了一种新的曲线——旋轮线,来和我一起看看吧,你也会觉得很惊奇的。

我想我们所认识的大多数形状都时不时地出现在日常生活,很难发现新的形状。从小学起我们就已经认识了方形、圆形和三角形,后来又学习了双曲线、椭圆还有正弦曲线,但很多人都不知道这个形状……那就是我最近才发现的令人惊奇的——旋轮线。接下来我将与大家一起学习这个新形状。

什么是旋轮线?

在维基百科中,旋轮线被定义为“一个圆无滑动地沿一条直线滚动时,其边上一点运动的轨迹。”用下面这个动图展示可能会更加直观一些:

伊安布利霍斯是古希腊哲学家、长袍潮流引领人,也是旋轮线的发现者,显然旋轮线带来的名气不能让他拥有自己的半身大理石像。

我想包括我在内的大多数人也只是知道伽利略是最早研究旋轮线并给它起名的人,他甚至用金属板制作了旋轮线的模型来研究旋轮线下的面积。如果那时候有微积分的话或许就容易一些了吧。顺便一提,发明水银气压计的托里拆利才是最终求解单条旋轮线下面积的人。

随着时间推移,旋轮线吸引了大批有名望的数学家,其中包括笛卡尔、费马、帕斯卡、牛顿、莱布尼茨、洛必达、伯努利、欧拉、拉格朗日等等我能一下子就叫上来的名字。

他们显然很喜欢创造一些关于旋轮线的竞赛和问题,之后再以相互攻击和辱骂结束。

帕斯卡早先就创造了一个关于求解旋轮线的重心、面积以及体积的比赛,并以西班牙金币作为奖金。可惜,三位评审认为没有人获胜。伦敦的圣保罗大教堂的设计者克里斯托弗·雷恩递交了一份关于计算旋轮线长度的证明,虽然这不是竞赛的内容,但仍值得赞许。一位评委在多年后声称自己已经解决了这个问题但一直没有文字记载,于是引发了舆论战争。

日本央行副行长若田部昌澄:日本央行实施货币宽松政策不仅是为了推高价格,也是为了实现经济的良性循环:2月3日消息,日本央行副行长若田部昌澄:日本央行实施货币宽松政策不仅是为了推高价格,也是为了实现经济的良性循环,即价格上涨伴随着工资、收入和就业增加。[2022/2/3 9:28:44]

遗憾的是,伯努利在1696年提出的挑战最终也以失败告终,之后我会给大家介绍。

利用数学更深入地了解旋轮线

我们已经对旋轮线的历史有所熟悉了,你可能会有些和伟人伽利略、雷恩一样的几何问题:旋轮线下的面积是多少?旋轮线的长度是多少?旋轮线到底是什么形状的啊?

还好我们有数学和发达的网络。

下面的参数方程可以表示出在一个圆前进时上面一点随时间变化的用x、y坐标表示旋轮线轨迹,x、y彼此独立,所以有两个方程:

x(t)=r(tsin(t))

y(t)=r(1cos(t))

为了更好地理解这两个方程,我们令t=π.此时x(π)=r(πsin(π))=r(π0)=πr.因为圆的周长为2πr,此时圆滚动了半圈;这个点的高度为y(π)=r(1cos(π))=r(1+1)=2r,两倍的半径可以看出圆上这一点达到了滚动一周的最高点。

通过两个等式,我们就可以利用微积分来计算旋轮线的长度和面积了。利用网络的帮助和对早先数学知识的回忆,我利用不同颜色的笔完成了这个优雅的证明:

就像有关于圆的其他问题一样,这个解非常简洁,单条旋轮线下的面积是3πr.令人惊奇的是,伽利略对于旋轮线下面积和圆面积的比值计算已经非常接近3:1了,而这个结果只是用非常老派的金属拼接方法来完成的。旋轮线的长度是8r,和雷恩老早就算出来的一致,之中没有π的影子。

迈阿密市长:为了国家安全,美国需要开采更多比特币:在接受加密货币记者Laura Shin采访时,迈阿密市长Francis Suarez表示,由于国家安全原因,美国应开采更多的比特币,因为90%的挖矿活动是在国外进行的。随着更多的挖矿活动,其导致的环境恶化已成为关注焦点。他指出,占大多数挖矿业的国家使用肮脏的能源,而美国则是改变这种说法的关键。Francis Suarez认为,由于有足够的资源,以迈阿密为首的美国可以成为比特币挖矿的中心。清洁能源(如无限核电)的使用,美国更多的挖矿业将首先使加密货币社区受益。 (深潮)[2021/3/29 19:25:18]

这个结果可以说非常之优美。

物理中的旋轮线

旋轮线只是中看不中用吗?自然界中是否存在旋轮线呢?虽然不像其他几何学亲戚那样,但旋轮线仍然以一些神奇的姿态存在于自然界中。

让我们来回到前面提到的、伯努利在1696年向顶尖数学家们提出了他的问题:

我,约翰·伯努利,致全世界最聪慧的数学家们:

对于聪明的人们来说,没有什么比一个直白且具有挑战性的问题更具有吸引力的了,更别说这些解法可能会让他们声名鹊起,流芳百世。根据帕斯卡、费马等人提出的例子,我希望我也能通过提出一个现在最顶尖的数学家们考验自己头脑的技巧和力量的问题,来获得学界的感谢。如果有人能够给出我接下来的问题的解法,那么我将在公众面前表达对他的赞美。

这个人完全不认为自己在说大话——虽然“公开赞扬”听起来好像并没有西班牙金币有吸引力。接下来就是他的问题:

在一个垂直空间中有点A和点B,有一质点只受到重力的作用从A至B,它的轨迹经过什么样的曲线用时最短?

换句话说,如果有一个小球只受重力场的作用,在一个无摩擦力的轨道上从高一点的A点至低一点的B点运动,那么什么轨迹可以使小球运动的时间最短?

声音 | 观点:没有必要为了Libra设立新的监管机构:Center on Economic and Financial Power研究员Yaya Fauns在接受AMBCrypto采访时针对“Libra监管问题”表示,没有必要设立新的监管机构。Yaya认为,国家政府可以“处理反和反恐怖融资法的执行”,金融行动特别工作组(FAFT)等组织可以制定全球融资标准,而埃格蒙特集团(Egmont Group,1995年由一些国家的金融情报中心在比利时成立的一个非正式组织)可以帮助协调各国的金融情报,因此不需要一个独立的具体机构。那只会是“官僚主义的干扰”。 Yaya还表示:“欧洲央行设立其他执法机构来处理加密货币似乎是多余的,这将破坏个别国家的执法和金融情报工作。”[2019/8/18]

但考虑到伯努利用错误的方法推导出了正确的结果、又从自己的兄弟那里抄来了正确的推导,他的“奖励”变得有趣了不少。

伯努利给公众了六个月的时间去提交解答,但没有收到回应。莱布尼茨提议将提交的期限延长至一年半,在这个延长期里,牛顿完成了这个挑战。

据牛顿说,他是在1967年1月29日下午4:00从皇家铸币厂回家时收到的约翰·伯努利的信件的。他工作了整晚并在第二天以匿名的方式邮出了自己的正确解答,但由于这个解答太过于优秀、太过于“牛顿”,伯努利一下子就认出了“留下这个爪印的狮子”。

牛顿一晚上的解决时间打破了伯努利所用的两周的记录。牛顿在自己的信中加入了一些当时数学家爱表达的不屑:“我不喜欢被外国人在数学方面纠缠和取乐……”牛顿从来都不怎么讨人喜欢,可以说是不近人情。

牛顿,最不近人情的旋轮线数学家。

声音 | 赵东:玩比特币不仅仅是为了赚钱:DFund资本创始人赵东在微博中回复网友表示,准确的说,赚钱很重要,不赚钱活不下去,但玩比特币不仅仅是为了赚钱。如果仅仅是为了赚钱,我早就干不下去了。随后对于网友提问春天来了吗?赵东表示,春天得2020年了,大家还是得准备好过冬,这样才能活到春天,加油![2018/12/18]

这个牛顿和伯努利解出的最快路径被称为最速降落曲线,来源于希腊语中的“最短时间”,根据这篇文章的主题相信大家也猜到了,这个路径就是旋轮线的一段,下面的动图用实验来展示这个问题:

不同的旋轮线曲线。

接下来我们可以看到由滚动的圆形或其他图形绕某些图形所组成的旋轮线家族。

你也可以通过从任意高度掉落物体来创造一条旋轮线,这个物体相对于地球的下落轨迹是一条竖直的线,但由于地球是一个旋转的圆形,所以这个下落轨迹将会是一条轻微的倒旋轮线!

文学中的旋轮线

在过去几个世纪中的文学作品中偶尔露面的旋轮线一定小有名气,虽然我不能列出所有的情况,但以下是从赫尔曼·梅尔维尔在1851年的经典作品《白鲸》中的一段:

在“裴阔德号”左手边的炼锅里,随着滑石在周围不住地绕圈,我突然第一次间接意识到一个事实,那就是所有在旋轮线上滑动的物体,以我的滑石为例,对于几何学来说,无论之前在哪一点,之后都会一同落下。

建筑中的旋轮线

可以看出旋轮线真的很有意思,我在想是不是在日常生活中还遗漏了一些旋轮线。

建筑由大量的几何图形组成。许多著名的拱都来源于圆形、椭圆形、抛物线型以及悬链线。每种都有大量的例子,我从中挑选了几个非常有名的:

三菱日联金融集团为了发行自己的加密货币 决定开设自己的交易所:据日本每日新闻14日报道,三菱日联金融集团为了发行自己的加密货币MUFGCION,决定开设自己的交易所。通过自行管理交易所,抑制货币价格的变动,并稳定地用于结算和汇款。这是日本银行首次发行虚拟货币并开设交易所,将于2018年实现。[2018/1/15]

巴黎的凯旋门是半圆拱券,也被称为古罗马拱券。

跨过伦敦泰晤士河的邱桥具有半椭圆拱,能够为船只和火车等交通工具创造较宽阔的跨度。

加州大苏尔美国一号公路的比克斯比桥具有抛物线拱。摄影:Alamy。

密苏里州圣路易斯的拱门是一个悬链线拱,由于重量分布均匀,是最坚固的拱形。

旋轮线看起来和拱很相似,所以有没有建筑用旋轮线拱的呢?根据网上的搜索结果,是有的,只是很少。有两个例子在介绍中反复出现:

第一个是美国德州沃斯堡的金贝儿艺术博物馆的屋顶,这个屋顶上的多个拱形是由一系列间隔的旋轮线组成的,这个滚轮构成的图形给予了它平滑的外观,非常适合一个艺术博物馆。

德克萨斯沃斯堡,金贝尔艺术博物馆的旋轮线拱。

第二个拥有旋轮线拱的建筑是达特茅斯学院中霍普金斯中心正面的拱,是我本科就读的学校,这让我产生了另外的思考:是不是我四年中每天都看到这个建筑,才为旋轮线如此着迷?

新罕布什尔州汉诺威,达特茅斯学院的霍普金斯中心正面的旋轮线拱。

艺术和娱乐中的旋轮线

可能你小的时候就已经“玩”过旋轮线了。万花尺是基于一种被称为内旋轮线的一般旋轮线的玩具,不同于随直线滚动的圆,内旋轮线是“由附着在大圆内滚动的小圆上一定点的轨迹构成的特殊平面曲线”。

万花尺。

内旋轮线有两个特殊形式三角旋轮线和星状线,可以分别通过特定的小圆沿大圆内部滚动三周及四周获得。你可能会在一些标识上见过星状线。

匹兹堡钢人橄榄球队的标识上包含3个星状线。

如果你觉得这种线条很令人舒适,有一些艺术家会利用多个不同尺寸组合滚动的圆来创造旋轮线艺术:

在Pinterest上的旋轮线艺术装置。

Kickstarter上售卖的旋轮线艺术品。

光学中的旋轮线

另一种旋轮线形式可以通过沿一个圆外部滚动的圆上一定点的轨迹构成。有一个特别的例子是心脏线,是一个圆沿另一个半径相等的圆外运动其上一点的轨迹构成的图形,如下图所示,这个形状刚好有一个尖角类似于一颗心,也是它名字的来源:

下次早晨喝茶的时候一定要瞪大眼睛看看茶杯里的图形!

分形几何和混沌理论的框架曼德勃罗集合的中心区域的边界也是一个精确的心脏线,虽然我不知道具体的原因,但仍然是另一种心脏线表现形式。

曼德勃罗集合第一阶段的中心区域由一个完美的心脏线围成。

旋轮线的形状不止局限于圆形,你也可以沿一条直线滚动一个非圆形然后发现一个全新的图形——多边形转迹线,下面是三角形和方形滚动的转迹线:

木星的卫星欧罗巴表面的旋轮线形。

欧罗巴表面的旋轮线形成。

总结

我希望你也从这篇文章中学到一些新图形的知识,毕竟旋轮线是一群很有意思的图形,在我看了一系列的旋轮线后,更想去深入认识身边的宇宙了……

参考文献:

Eli,MaorandEugenJost.“TwistedMathandBeautifulGeometry.”AmericanScientist.

Lynch,Peter.“Thecurvedhistoryofcycloids,fromGalileotocyclegears.”TheIrishTimes.17-Sep-2015.

作者:RySullivan

翻译:zhenni

审校:Nothing

原文链接:

https://medium.com/@rysullivan/celebrating-the-cycloid-be4350ff187b

翻译内容仅代表作者观点

不代表中科院物理所立场

编辑:zhenni

来源:中科院物理所

郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。

金智博客

[0:46ms0-4:31ms