2022年12月,ChatGPT的横空出世,让OpenAI用一个核弹级的应用成果,改变了科学研究和工程应用的范式。
2023年3月15日,GPT4发布,人工智能再次吸引了大家的目光。互联网巨头、AI初创企业、投资人、AI资深研究者,甚至是对这个领域有兴趣的行业人士,大家都在关注。
3月14日上午,创新工场董事长兼首席执行官、创新工场人工智能工程院院长李开复今年第一次线下和媒体见面,针对人工智能的众多问题,分享他对AI 2.0这一最前沿的科技投资趋势的看法。
“AI 2.0 带来的平台型机会将比移动互联网大十倍,这也是中国第一次迎来平台竞逐的机会。新平台上所有用户入口和界面都将被重写,能够建立下一代平台的公司将会取得巨大的优势和话语权。”
以下是李开复的现场演讲,我们来看看他对ChatGPT,对AI的诸多见解。
AI 1.0 是电,AI 2.0就是电网
AI已经来到从1.0迈入2.0的拐点,AI 2.0将会带来平台式的变革,改写用户的入口和界面,诞生全新平台,催生新一代AI 2.0应用的研发和商业化。
什么是平台?平台有几种功能?AI的深度学习是平台吗?AI的深度学习是能改变世界的技术,但还不是一个平台。成为一个平台,要做的第一件事情是降低开发应用的成本,如果做不到这一点,它只是一个伟大的技术,并不是平台。
就像电是伟大的发明,但没有电网,能接上任何东西吗?能发明微波炉、烤箱、电动车吗?不可以,所以电网才是平台。AI 1.0就是电,AI 2.0就是电网。
我定义的AI 1.0,是以2015年CNN卷积神经网络模型为核心的计算机视觉技术,拉开AI感知智能时代的序幕,机器开始在计算机视觉、自然语言理解技术等领域超越人类,并创造了显著的价值,开始有机器人、无人驾驶的出现。过去七八年,这一直是很振奋人心的事情。
美联控股集团宣布采购200台蚂蚁矿机S19j Pro比特币矿机:金色财经报道,?区块链技术公司美联控股集团宣布已签订一项资产协议与两个非关联第三方签署购买协议,购买200台Antminer S19j Pro(110 TH/s)比特币矿机,并同意向卖方发行价值88万美元的公司普通股。这些机器预计将于2023年7月31日交付并投入运行。[2023/7/14 10:55:42]
但是AI 1.0也遇到了瓶颈,大多数行业想利用 AI,需要花费巨大的成本来收集和标注数据,而这些数据集和诸多模型各成“孤岛”缺乏纵效,不能跨领域使用。
很多公司本来很兴奋,老板听到了AI很好,决定要做,做了一年没有结果,再往后就不做了。很多AI公司说帮助赋能了A,助力了B,给各个商业公司创造价值,但很难赚到钱,因为成本高。这也是为什么大部分的AI 1.0企业投入大笔研发经费,但仍然长年亏损。
还有一个小问题是,AI 1.0被说的很神奇,但感觉又没有那么智能,像是人工的简单替代,只是用在识别声音、识别英文或者中文等上,或者帮银行降低坏账率,但没有跨领域的认知。所以AI 1.0的智慧有一定瓶颈。
除此之外,AI 1.0缺少像互联网时代的Windows和Android一样的规模化能力,来降低应用开发的门槛,打造完善生态链。几年下来,AI 1.0尚未真正实现商业上的成功。在AI 1.0时代,我们也投了第四范式等几家公司,共计10家优秀的AI独角兽企业。
现在AI 2.0时代来了,这是AI迄今为止最重要的一个时代。
AI 2.0 时代第一个现象级应用
在我的畅销书《AI·未来》里提到:“在人工智能时代,数据是新的石油,谁的数据多,谁就占了大的优势”。
世界上最多的数据就是文字、图片、视频,比如从医学的影片到蛋白质到所有交通信息等,为了让这些数据能够跨领域使用,一些研究员想了一个非常巧妙的方法,让AI去收集全世界的数据,然后自己教自己,教一段时间后形成一个模型——基础大模型(Foundation Model),这个基础模型就是全世界的数据训练出来的。
Treasure DAO发起“将部分ARB分配给生态游戏工作室以巩固战略合作关系”的提案:6月4日消息,据相关页面信息,Arbitrum 网络去中心化游戏生态系统 Treasure DAO 发起“将部分ARB分配给生态游戏工作室以巩固战略合作关系”的提案。提案指出已从 Arbitrum 基金会获得 800 万枚 ARB,提议向生态有贡献的游戏开发者分配 200 万枚,以此巩固战略合作关系,并为 Treasure DAO 的下一阶段发展提供激励。
提案提议向包括 Beacon、Realm、Tales of Elleria、Knights of the Ether 以及 The Lost Donkeys 在内的 Treasure 生态游戏进行 ARB 分配。[2023/6/4 21:14:52]
但不是完全从0-1的过程,它有一定的基础,这个基础可以是中文、常识、多领域认知。比如一个正在上一年级的6岁孩子,他已经有一些基础知识,可以自主阅读,读漫画书、三国演义等,只是深度不够,但如果你跟他讲三国时代,他说,“我记得”“以前我看过这个漫画”“知道曹操是谁”……就是这样一个过程。
AI 2.0基础模型有几个特别重要的特征:
第一、不用人工标注,可以阅读海量文本;
第二、规模非常大,做这个模型需要几千张GPU来训练,现在只有大厂还有拿到巨额融资的企业才能做;
第三、它通过微调等方式适配和执行五花八门的任务,真正有望实现平台化的效应,进而探索商业化的应用创新机会。
基础大模型需要超级巨量数据和超级算力,未来 2-3年,只要全世界的数据能储存起来,一定有科研机构会突破,做出来最伟大的基础模型。
总之,AI 2.0的巨大跃迁之处在于,它克服了前者单领域、多模型的限制。一旦有了这个巨大的模型,相关的新应用也会出现,银行、保险公司、制造行业,甚至机器人、无人驾驶等,未来都可以通过这个大模型,提高公司的效率,降低成本。
Coinbase CEO:WaaS服务可通过Coinbase Cloud中的自助服务获得:3月22日消息,Coinbase首席执行官Brian Armstrong在推特上表示:“钱包即服务(WaaS)现在可通过Coinbase Cloud中的自助服务获得(目前仅限测试网)。能够通过快速入门指南并使API正常工作。向推动这一进程的团队点赞。要让我们所有的API在一个综合产品(Coinbase Cloud)中展示,并具有一致的身份验证、日志记录、计费、SDK等,还有很多工作要做。我们在内部构建了很多困难的东西——不妨将其公之于众。”
此前3月8日消息,Coinbase推出钱包即服务(WaaS)产品以简化web3入门。[2023/3/22 13:18:40]
AI 2.0 时代的第一个现象级应用是生成式 AI(Generative AI),也就是国内流行的AIGC。生成式 AI 能够实现无需标注的自监督学习,AI 将从“辅助”人到逐步“替代”人工,所有使用者界面将被重新设计改写。
打个比方,想象让AI读一本书的前9章之后,“猜测”第10章,再让AI对比真正的内容,读过上千万本书后,模型不断优化和迭代。以这样的方式,AI 变得越来越精准,最终形成适用不同领域的基础大模型。
AI 2.0模型不仅可以学习文本和图像数据,还可以从语音、视频、自动化硬件传感器数据,甚至DNA或蛋白质信息等多模态数据中学习,建构机器超强大脑的运行能力。甚至不止于生成,而逐步达到具有预测、决策、探索等更高级别的认知智能。
所以,AI 2.0 不仅仅是个红极一时的高能聊天工具,也不仅仅是图文创作的AIGC生成程序,如今看到的应用都还只是 AI 2.0 能力的开端,不该限制了人们对 AI 2.0 未来潜力的想象。
所有的应用都会被重写一遍——三个阶段应用
AI 2.0 的发展范式是迭代式的,从“辅助人类”到“全程自动”将会出现三个阶段:
第一阶段人机协同,生产力工具将会首先实现升级,所有使用者界面将被重新设计:文档工具不再是逐字输入,而是用户告诉AI想要什么样的文章;绘图软件不再需要用户动手,通过文字的描述就可以实现。
以太坊非零地址数达到91,505,224,创历史新高:金色财经报道,Glassnode数据显示,以太坊非零地址数达到91,505,224,创历史新高。[2022/12/17 21:50:46]
在这一阶段,人类仍与AI保持协作,筛选和纠正AI创作的内容,避免谬误和灾难发生。
比如,苹果有名的广告“Think Different”,这个设计花了几千万美元,但如果用AI 2.0的工具,跟AI说,“我要一个黑白经典背景”“让世界最受尊重的名人戴上苹果产品”“讲一句乔布斯的名言”,输进去后广告就出来了,只要暗示是苹果产品就可以。
第二阶段局部自动,容错度高的应用和行业将率先实现AI自动化,例如广告投放、电子商务、搜索引擎、游戏制作等。
第三阶段是全程自动,AI将变得完全自动化并可在任何地方使用,在不容出错的领域出现突破,AI医生、AI教师等应用成为可能。
我们可以感受到,创造的过程、用户体验、产品、商业模式都不一样了,使用者也不一样了,过去是谁重复性的工作干得最好,就能够胜出,得到最高的认可、薪水和社会地位。
现在是谁最能够深度了解品牌需求,用户需求,能够用非常好的语言描述出他想要的东西,然后让AI来生成。所有的应用都会被重写一遍。
生产力工具的升级是一个巨大的机会,用语言生成图片可以把时间从一小时缩短到几秒钟,把150美元的成本降到8美分,这些例子是真实的。
很多人认为生成式AI的商业前景还太小,是因为金融分析师没有考虑到AI 2.0的收费模式是不一样的。有报告说,一个搜索要增加3美分,靠广告盈利模式会赔很多钱。短期可能是这样的,长期来看3美分的成本也会降下来。
未来AI可以根据用户问什么问题、按照答案的含金量来收费,所以这个商业模式是会变的。AI 2.0将在六大领域加速点燃商业潜能,进入提升生产力的应用井喷期,这里有很多机会。
所有的应用都会被重写一遍,生产力应用即将进入井喷期
第一个领域是,AI 2.0 +电商/广告。
法国初创公司Qori完成180万欧元的种子轮融资:金色财经报道,法国初创公司Qori已经推出,使欧洲人能够通过银行或加密钱包在商店、远程或在线支付,而无需下载专有应用程序。通过与欧洲支付服务提供商、终端分销商、电子商务集成商和 POS 制造商的合作,数十万商家可以使用银行支付和加密技术支付。
该公司已从包括 Hottinger、Golden Record Ventures、Firestartr、Systema VC 和前欧洲地带负责人 Guillaume Princen 等天使投资人那里获得了180万欧元的种子轮资金。这笔资金将用于扩大 Qori 的开发团队,并将其产品大规模部署到奢侈品、酒店和生活方式领域以及在线市场。(finextra)[2022/7/12 2:08:15]
AI 1.0和AI 2.0都有个特色,就是可以“千人千面”,每个人看到同一个产品,它的描述和图片可以完全不一样。所以,AI 2.0时代,电商及广告将更为AI大数据驱动,能够做到实时测试和动态调整,甚至把几分钟前的社会热点融入广告内容,最大程度提高转化率。
下面两张图是我自己做的,当时我是要见某个化妆品公司的CEO,我跟他说你的使用者是“千人千面的”。不同肤色的人群、不同群体的消费者,对化妆品的需求是不一样的。我们针对每个消费者的认知开发,让AI画出和写出不同的东西,这里的每个字每个图都是AI生成的。
另一个广告是关于特斯拉。我最喜欢的老电影是《回到未来》,里面的那辆车很酷,当时我就想以后一定要买,特斯拉就应该推这样的广告给我,最大程度地触动我,我从十几岁就想要这样一辆车,现在不但有了,而且我买得起。或者有人崇拜马斯克,就会收到这样一个英雄站在车旁的广告。这些都是AI大概了解我的想法后生成的图片或文字。
抖音为什么火?虽然抖音更多的视频是人拍的,但这些视频用AI推荐引擎精准地推给每个用户,所以每个人看到的是不一样的,这就是“千人千面”。
所以,AI 2.0可以针对不同受众量身定制和实时生成内容,真正实现“千人千面”的营销。
第二个领域是,AI 2.0 + 影视/娱乐。
AI可以根据大众的喜好定制电视和短视频内容,使其创作的内容更容易吸引大众的眼球,获得更好的收视率和口碑。AI +多模态的创作,将成为下一世代的娱乐主流,AI辅助创作会逐步形成全新的创意产业生态价值链。
第三个领域是,AI 2.0 + 搜索引擎。
未来的搜索引擎将由传统的检索模式,变成“提问-回答”的模式。下一代的对话式搜索引擎,将成为全球科技巨头角逐的“AI 2.0 圣杯”,当今搜索广告商业模式也将迎来变革。但由于人们对搜索结果有“精准”的期待,如今的技术要做好问答式搜索还需要很多进步。
第四个领域是,AI 2.0 + 元宇宙/游戏。
AI 2.0将大大降低游戏和元宇宙等虚拟世界的内容生成的成本。例如AI可以成为实时聊天伴侣,增强互动的乐趣,提高娱乐性,激励用户参与,最大化游戏时长。
GPT很早之前的应用就是玩文字游戏,还有元宇宙,最近不太火了,其中一个原因就是产生元宇宙内容价格昂贵,但AI 2.0可以使成本大大下降,推动元宇宙发展。
第五个领域是,AI 2.0 +金融。
更快、更准确、更智能的内容生产方式,将大幅度提高财经新闻和市场研究分析的及时性与产出量。但由于财经内容的严肃性,人工进行事实核查和验证仍不可或缺。AI 还可以将金融信息的生产和金融产品的上线自动化,提高金融机构信息流及交易量的效率和质量。
第六个领域是,AI 2.0 +医疗。
AI能够快速精准分析患者的整体健康状况,吸纳所有数据、生物特征、体检、病史和个人模型预测,成为医生们的得力助手,大幅加速科学诊断和治疗决策。借助AI能够进行更有的放矢的药物研发,实现个性化的医疗分诊和诊疗方案,推动“个性化医学”的到来。
巨头垄断和信息造假隐患
AI 2.0背后一个很大的挑战是计算量,ChatGPT大大提升了对算力的需求。所以今年为什么那些做AI平台的,或者做基础模型的公司,需要花几亿美元买机器,因为这个是很大的需求,很大的机会,也是很大的挑战。
在这样的背景下,资金实力雄厚的科技巨头将有垄断优势,导致创业公司和学术界很难做出有竞争力的模型。
现阶段,AI 2.0并不能做到完全正确。AI还无法保存全世界的数据,只能通过压缩形成抽象的概念,因此会出现“一本正经地胡说八道”的现象。
更重要的是,AI目前还无法分辨真伪和辨别是非,比如跟AI说现在想做一个广告,让父母买玻璃碴给刚出生的婴儿吃;比如刚才的化妆品广告,AI说里面含有人参、珍珠等成分,但其实没有。如果被恶意利用将会带来无法衡量的负面后果。
可以想象,曾影响干扰美国选举的“剑桥分析”丑闻,如果发生在AI 2.0的时代,将会给社会造成更大的伤害。这些都是防不胜防的,机器有时候也会做出伤害人的事。
还有一些技术性问题,比如模型太大,开发者怎么针对应用快速做API,怎么确保应用合法合规等。
OpenAI的CEO也曾说,“ChatGPT虽然酷,却是个糟透了的产品”。
未来要想不犯错,还需要有一些新的发明跟软件来降低犯错的概率,否则它会一直犯错。我们要研究怎么做才能让AI乖乖听话。
下一个阶段是AI不犯错,可以自动用在各种领域,这个称为AI 3.0时代,更长远的未来。
我们看好的投资机会
Deep Tech VC创新工场2012年已开始挖掘AI赛道,现在迎向AI 2.0的拐点,创新工场主要关注三大方向:
第一是,AI 2.0 智能应用。
AI 2.0应用将会迎来遍地开花的阶段,包括各行各业的垂类AI助理、元宇宙应用等之前做不出的应用都会出现。除了新的应用,很多现在已有的应用都可以被重新改写,比如搜索引擎、内容创造、广告营销,AI 2.0将革新用户体验,创造出全新的商业模式,蕴含非常巨大的想象空间。
第二个是AI 2.0平台。
AI 2.0平台将会加速新一代AI 2.0应用的研发和商业化,创新工场看好具有战略高度的AI 2.0平台公司,推动AI 2.0的生态循环和良性竞争。
第三个是AI基础设施。
除了应用和平台之外,支持AI模型运维、管理、训练的基础设施,也是创新工场重点关注的,包含支撑AI 2.0巨型模型训练的AI芯片公司,以及那些能够加速、降低成本和简化AI训练的AI 2.0基础设施的创新技术型企业。
在AI 1.0时代,我们投出了10家独角兽。今天的AI 2.0,我们已经开始布局,投资了一些公司,美图是最快应用AI 2.0的公司,还有创新奇智也在探索AI 2.0+制造。比较非常自豪的就是投资了澜舟科技,他们做出了孟子大模型。AI基础设施公司投资了潞晨科技。
创新工场的独特之处是可以到处看创业者,看看谁要发英雄帖、朋友圈。我们也关注AI领域谁的论文写得最好。跟其他VC不一样的点是,我们可以自己做“塔尖孵化”,“用科技投资+全面赋能”的模式帮助科技创业者做大做强。
我们预测平台公司将诞生,但不会很多,因为门槛很高,但如果他们把基础大模型做好,把中间层工具做好,会造福整个做应用的行业。
很多人会说,AI 2.0会不可避免加剧失业风险。毫无疑问,最具创造力的顶尖人才将会乘上A1 2.0的东风,全面提升生产力和效率。但随之而来的是重复性的工作将会被AI 2.0接替,这些岗位上的人不得不寻求职业的转变与技能的升级,其中包含高比例的白领岗位,亟需进入到更需要发挥创造价值的行业。
但AI 2.0 并不意味着通用人工智能(AGI)就此到来。人类有很多与生俱来的关键能力,诸如创造力、策略思考、跨领域常识、自我意识、同理心和爱等,这些尚未被破解的深层次能力,是 AI 2.0 也无法全盘复制的。
最后一句话,来自硅谷顶级投资人对这个领域的预测:
这个市场的潜在规模难以把握 ——它将介于所有软件和所有人类的努力之间。
区块链News
企业专栏
阅读更多
金色财经 善欧巴
金色早8点
白话区块链
Arcane Labs
Odaily星球日报
MarsBit
欧科云链
深潮TechFlow
BTCStudy
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。