来源:机器之心
纯文本大模型方兴未艾,多模态领域也开始涌现出多模态大模型工作,地表最强的GPT-4具备读图的多模态能力,但是迟迟未向公众开放体验,于是乎研究社区开始在这个方向上发力研究并开源。MiniGPT-4和LLaVA问世不久,阿里达摩院便推出mPLUG-Owl,一个基于模块化实现的多模态大模型。
今天要介绍的是mPLUG-Owl,该工作不仅通过大量cases展示出优秀的多模态能力,还第一次针对视觉相关的指令理解提出一个全?的测试集OwlEval,通过人工评测对比了已有模型,包括LLaVA、MiniGPT-4、BLIP-2以及系统类MM-REACT等工作,实验结果表明mPLUG-Owl展示出更优的多模态能力,尤其在多模态指令理解能力、多轮对话能力、知识推理能力等方?表现突出
波场TRON成为Crypto Expo Asia、TOKEN2049官方赞助商:据官方消息,波场TRON在其官方推特账号宣布,正式成为本年度TOKEN2049及亚洲加密货币博览会(Crypto Expo Asia)的官方赞助商。波场TRON表示,很高兴赞助TOKEN2049及Crypto Expo Asia两场年度顶级Web3活动,并期待在大会展示波场TRON前沿的区块链技术并分享Web3领域的突破性见解。
据了解,Crypto Expo Asia 是亚洲全球加密生态系统的重要盛会,本年度Crypto Expo Asia将于6月7日至8日在新加坡举行,预计将吸引超过10000名全球与会者,与波场TRON同时赞助本次活动的有CoinW、JPEX等行业头部机构。
本年度TOKEN2049将于9月13日至14日在新加坡举行,与会者将超过10000人,主办方预计本届会议有望成为全球同类会议中规模最大的一次。在2022年度的活动中,波场TRON作为大会的赞助商参与,波场TRON创始人孙宇晨受邀出席并在大会发言表示波场TRON未来的目标是成为主流金融服务机构,这也是加密行业的未来。[2023/6/7 21:21:22]
OKX NFT市场AI创作功能升级,新增数十种艺术风格:5月10日,据OKX官方消息,OKX NFT市场AI创作功能再升级,用户除了可通过文字描述、上传图片生成艺术品外。本次新增数十种艺术风格,创作者可自由选择,极大的提升了创作质量和体验。据此前消息,OKX NFT市场已于去年上线AI创作功能。
此外,OKX NFT市场将基于此功能正式开启AI 机器人头像NFT创作大赛,并将以全体用户共同创作的方式推出OKX AI Robot合集,用户可以通过OKX NFT市场的AI创作功能零成本参与活动创作,还有机会获得该合集的限量 NFT并瓜分10,000 USDT大奖。[2023/5/10 14:55:00]
论文链接:https://arxiv.org/abs/2304.14178
代码链接:https://github.com/X-PLUG/mPLUG-Owl
Cardano 开发公司 IOG 推出 Cardano 钱包 Lace:金色财经报道,Cardano 开发公司 Input Output Global(IOG)推出 Cardano 生态浏览器插件钱包 Lace。该钱包类似于 MetaMask,除了接受发送资产以及与 DApp 交互之外,该钱包还支持 ADA 质押以及在单笔交易中将资产发送到不同地址。[2023/4/12 13:57:45]
ModelScope体验地址:
https://modelscope.cn/studios/damo/mPLUG-Owl/summary
HuggingFace体验地址:
https://huggingface.co/spaces/MAGAer13/mPLUG-Owl
多模态能力展示
我们把mPLUG-Owl与现有工作进行对比来感受一下mPLUG-Owl的多模态效果,值得一提的是,该工作中评比的测试样例基本上都来自已有工作,避免了cherrypick问题。
Mechanism Capital合伙人今日买入价值2000万美元BTC多单和1950万美元ETH多单:2月17日消息,据GMX数据显示,Mechanism Capital合伙人兼知名GMX Trader Andrew Kang地址(0xe8...39BD)今早减少了持仓价值3500万美元的ETH多单和3700万美元的BTC多单,后又累计买入了持仓价值2000万美元的BTC多单和1950万美元的ETH多单。
目前,该地址持有10倍杠杆持仓价值达1966万美元的ETH多单和8.8倍杠杆持仓价值达2013万美元的BTC多单,分别浮盈18万美元和13万美元。[2023/2/17 12:13:26]
下图6展示了mPLUG-Owl很强的多轮对话能力。
稳定币HUSD已脱锚至0.7488美元:金色财经报道,据CoinMarketCap数据显示,由Stable Universal Limited发行的稳定币HUSD已脱锚至0.7488美元。
据悉,自从10月28日Huobi Global宣布下架HUSD并将用户账户内HUSD兑换成USDT以来,HUSD开始发生脱锚情况,且脱锚幅度逐渐扩大。[2022/10/31 11:59:20]
从图7中可以发现,?mPLUG-Owl具有很强的推理能力。
如图9展示了一些笑话解释例?。
在该工作中,除了评测对比外,该研究团队还观察到mPLUG-Owl初显一些意想不到的能力,比如多图关联、多语?、文字识别和文档理解等能力。
如图10所示,虽然在训练阶段并没有进行多图关联数据的训练,mPLUG-Owl展现出了一定的多图关联能力。
如图11所示,尽管mPLUG-Owl在训练阶段仅使用了英文数据,但其展现出了有趣的多语?能力。这可能是因为mPLUG-Owl中的语?模型使用了LLaMA,从而出现了这一现象。
尽管mPLUG-Owl没有在带有标注的文档数据上进行训练,但其仍然展现出了一定的文字识别和文档理解能力,测试结果如图12所示。
方法介绍
该工作提出的mPLUG-Owl,其整体架构如图2所示。
模型结构:它由视觉基础模块(开源的ViT-L)、视觉抽象模块以及预训练语?模型(LLaMA-7B)组成。视觉抽象模块将较?的、细粒度的图像特征概括为少量可学习的Token,从而实现对视觉信息的?效建模。?成的视觉Token与文本查询一起输?到语?模型中,以?成相应的回复。
模型训练:采用两阶段的训练方式
第一阶段:主要目的也是先学习视觉和语?模态间的对?。不同于先前的工作,?mPLUG-Owl提出冻住视觉基础模块会限制模型关联视觉知识和文本知识的能力。?因此mPLUG-Owl在第一阶段只冻住LLM的参数,采用LAION-400M,?COYO-700M,?CC以及MSCOCO训练视觉基础模块和视觉摘要模块。
第?阶段:延续mPLUG和mPLUG-2中不同模态混合训练对彼此有收益的发现,Owl在第?阶段的指令微调训练中也同时采用了纯文本的指令数据(52kfromAlpaca+90kfromVicuna+50kfromBaize)和多模态的指令数据(150kfromLLaVA)。作者通过详细的消融实验验证了引?纯文本指令微调在指令理解等方?带来的收益。第?阶段中视觉基础模块、视觉摘要模块和原始LLM的参数都被冻住,参考LoRA,只在LLM引?少量参数的adapter结构用于指令微调。
实验结果
SOTA对比
为了比较不同模型的多模态能力,该工作构建一个多模态指令评测集OwlEval。由于?前并没有合适的自动化指标,参考Self-Intruct对模型的回复进行人工评测,打分规则为:A="正确且令人满意";B="有一些不完美,但可以接受";C="理解了指令但是回复存在明显错误";D="完全不相关或不正确的回复"。
对比结果如下图3所示,实验证明Owl在视觉相关的指令回复任务上优于已有的OpenFlamingo、BLIP-2、LLaVA、MiniGPT-4。
多维度能力对比
多模态指令回复任务中牵扯到多种能力,例如指令理解、视觉理解、图?上文字理解以及推理等。为了细粒度地探究模型在不同能力上的?平,本文进一步定义了多模态场景中的6种主要的能力,并对OwlEval每个测试指令人工标注了相关的能力要求以及模型的回复中体现了哪些能力。
结果如下表格6所示,在该部分实验,作者既进行了Owl的消融实验,验证了训练策略和多模态指令微调数据的有效性,也和上一个实验中表现最佳的baseline—MiniGPT4进行了对比,结果显示Owl在各个能力方?都优于MiniGPT4。
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。