当我们部署和调用合约的时候,EVM都在做些什么?
如果你开发过以太坊智能合约,想必你应该熟悉这样的操作(此处以remix为例):
编写solidity代码->编译->部署->交互。合约的编写与部署似乎并不是一件很麻烦的操作:编写阶段就不说了,Solidity语言大家都应该会;到了编译阶段,本地的solc编译器会把Solidity代码编译成字节码;而在部署阶段,部署者通过发起一笔特殊交易calldata带上编译后的字节码,等交易上链之后,就完成了合约的部署;而合约交互,就是call合约里的某个函数,等待函数的响应和返回,一切就是这样的简单。
但是正如开车一样,当你踩住油门后,车辆开始前进。然而这看似简单的操作背后是汽油爆燃、活塞往复、数百个齿轮啮合传动、轮胎与地面滚动摩擦的复杂行为。部署和调用合约也是如此,它涉及到EVM的堆栈操作,内存读写,存储访问等一系列底层操作。当部署合约时,EVM把收到的calldata翻译成操作指令,把它们按照给定的长度和参数读入内存;当调用合约时,EVM又根据收到的calldata,通过函数选择器来确定调用哪一段代码,并返回数值。如果只讲理论未免过于枯燥,为了便于讲解,我们这次用ethernaut的一道题目作为例子,详细了解EVM是如何部署和运行合约的,以及如何充当人肉编译器,徒手编写智能合约。
以太坊联创Taylor Gerring的地址收到约1万枚ETH:金色财经消息,据欧科云链OKLink多链浏览器显示,以太坊联合创始人Taylor Gerring的以太坊地址tgerring.eth于9月5日08:06:24收到约1万枚ETH,价值约1580万美元。[2022/9/5 13:09:03]
这个题目是这样的:我们需要部署一个合约,当我们调用合约**whatIsTheMeaningOfLife()**函数的时候,它需要返回一个数字“42”。看起来很简单对吧?我们分分钟编写完毕:
慢着,题目后面还有个小小的附加要求:“所部署的合约大小不超过10个操作码”。好吧,这个要求的确够“小”,要知道连合约头部的“函数选择器”都不止10个操作码好吧?可是“函数选择器”是什么,为什么会出现在合约里面呢?带着你的疑问,继续向下看。
我们通过./solc--asm--bintarget.sol来看看这个合约的最终编译结果:
608060405234801561001057600080fd5b5060b68061001f6000396000f3fe6080604052348015600f57600080fd5b506004361060285760003560e01c8063650500c114602d575b600080fd5b60336047565b604051603e91906067565b60405180910390f35b6000602a905090565b6000819050919050565b6061816050565b82525050565b6000602082019050607a6000830184605a565b9291505056fea26469706673582212206ef8c7b5177952a701b3b46b69cb3ec296f4c54c946692e8ec901f5e43c1e78a64736f6c63430008110033
以太坊链上巨鲸“Gimli”买入7500亿枚SHIB:金色财经报道,根据 WhaleStats数据,以太坊链上最大的投资者之一“Gimli”买入三笔巨额Shiba,分别是:250,000,000,001、249,998,999,999 和 250,000,999,999 Shiba Inu,总计近7500亿个。大约花费了840万美元。[2022/7/9 2:01:56]
这么一大坨十六进制数据,就是上述Solidity程序编译之后的字节码。当我们部署合约时,把这一堆data发给以太坊节点,等广播完成后,合约就部署完毕了。这是solc编译器编译Solidity程序得到的代码,看似杂乱无章的的数据,其实都是和opcodes一一对应的。我们来一段一段地看这些代码:
合约部署代码:
608060405234801561001057600080fd5b5060b68061001f6000396000f3fe
合约运行代码:
6080604052348015600f57600080fd5b506004361060285760003560e01c8063650500c114602d575b600080fd5b60336047565b604051603e91906067565b60405180910390f35b6000602a905090565b6000819050919050565b6061816050565b82525050565b6000602082019050607a6000830184605a565b9291505056fe
区块链索引协议The Graph将部署以太坊通用状态通道:总部位于旧金山的区块链索引协议The Graph宣布将与开源项目State Channel、L4、Magmo、Connext和Consensys Mesh R&D合作构建基于以太坊网络部署可扩展通用状态通道,旨在帮助用户直接连接到去中心化服务提供商的分布式网络,从而实现更快,更安全的P2P小额支付交易。据悉,该通用状态通道部署完成之后将由Consensys Diligence进行技术审核,一旦审核工作完成后该协议将会对所有人开放。(The Block)[2020/10/10]
auxdata:
a26469706673582212206ef8c7b5177952a701b3b46b69cb3ec296f4c54c946692e8ec901f5e43c1e78a64736f6c63430008110033
我们先简单地把这堆代码分为合约的部署代码、运行代码、auxdata三部分,如何理解这三种代码呢?我觉得可以理解为向太空发射卫星:“部署代码”就是运载火箭,而“运行代码”就是卫星。运载火箭只在发射卫星时才起到作用,一旦卫星进入轨道,火箭就废弃了,只留下卫星在太空中与地球通信。部署合约也是如此,在部署合约时,部署代码把一些初始化工作作完之后,就把合约的运行代码送入EVM,只留下运行代码在链上与用户进行交互。
动态 | 以太坊未确认交易23567笔:据Etherscan.io数据显示,以太坊未确认交易23567笔。以太坊全网算力为162.62 TH/s,当前挖矿难度2026.16 TH,交易处理能力9.9 TPS。[2019/6/21]
那么言归正传,我们题目要求我们合约运行代码的opcedes不超过10条,那么,这段代码对应的opcodes是多少条呢?答:71条。
那么问题来了,如何把71条opcodes精简到10条以内呢?这就需要我们对EVM运行智能合约的方式有着一定的了解。如果不了解也没关系,拿起你手边的EVM指令集,我们一起来看看吧:
首先我们要知道,EVM执行代码时是按照自上而下的顺序执行的,代码中没有其他入口点,始终从顶部(也就是第一行opcode)开始执行。。也就是说,当我们部署合约时,EVM会从第一个bytecode开始读起。
所以我们看字节码最前面的部分,也就是它的部署代码:608060405234801561001057600080fd5b5060b68061001f6000396000f3fe
对照EVM指令,我们可以识别出这段代码的含义:
以太坊开发人员针对波多黎各飓风开发了区块链保险政策:据coindesk消息,根据周二发布的消息,波多黎各当地的两位以太坊开发人员创立了初创公司Etheric,制定了一项特别为波多黎各居民提供飓风破坏保护的区块链保险政策。[2018/4/25]
然后我们看合约的运行代码:
6080604052348015600f57600080fd5b506004361060285760003560e01c8063650500c114602d575b600080fd5b60336047565b604051603e91906067565b60405180910390f35b6000602a905090565b6000819050919050565b6061816050565b82525050565b6000602082019050607a6000830184605a565b9291505056fe
综合以上可以发现,合约的运行代码的架构是这样的:
初始化操作、函数选择器这些,是solc在编译Solidity程序的时候自动生成的。如果我们砍掉这些复杂的东西,直接把我们想要的核心功能编码上去,不就可以在10条以内opcodes实现既定功能了吗?
通过分析图4的whatIsTheMeaningOfLife()函数调用栈可以得知,让智能合约返回“42”(十六进制0x2a)的关键在于先用mstore指令将0x2a放入Memory,再用return指令将内存里的0x2a返回即可。至于那些函数名称和函数签名,只是高级语言的编译产物,直接用汇编实现的话,我们直接用这段代码读写内存,完全没有必要搞那些花里胡哨:
以上代码相当于构造了一个十分小的合约“运行代码”。前面我们说过,EVM执行代码时是按照自上而下的顺序执行的,代码中没有其他入口点,始终从顶部(也就是第一行opcode)开始执行。而且我们编写的代码并没有函数选择器,也就是说,当外部账户调用该它时,无论传递给它什么样的参数、什么样的函数签名,EVM都只会从它的处开始执行,老老实实地走到,然后return给我们一个0x20.
但这只是运行代码,还记得本文开头说的那三段字节码吗?是的,我们还差一个“运载火箭”,把这段运行代码给发射出去:
部署代码的结构基本没怎么变,之前已有解析,此处就不罗嗦了,唯一的区别是把复制到内存的长度由b6改为0a?:608060405234801561001057600080fd5b50600a8061001f6000396000f3fe
然后把他们拼接到一起,记得部署代码在前、运行代码在后,最后我们把这段代码发射出去就OK了:
你将得到一个超级小巧、只有10个字节、无论传递什么参数都只会返回?42?的“智能合约”
全文完。
关于作者:
https://twitter.com/0xNezha
来源:bress
郑重声明: 本文版权归原作者所有, 转载文章仅为传播更多信息之目的, 如作者信息标记有误, 请第一时间联系我们修改或删除, 多谢。